
yt Documentation
Release 1.5-beta

Matthew Turk

October 08, 2009

CONTENTS

1 Introduction 3
1.1 History . 3
1.2 What yt is and is not . 3
1.3 What functionality does yt offer? . 3
1.4 How do I cite yt? . 5

2 Getting the Code 7
2.1 Installation . 7
2.2 Notes on Common Installation Locations . 8
2.3 Installing by Hand . 9
2.4 Starting up YT . 10

3 Analysis Philosophy 11
3.1 Design Goals . 11
3.2 Object Methodology . 12
3.3 Derived Fields and Derived Quantities . 13

4 How to Use YT 15
4.1 Quick Start Guide . 15
4.2 A Slightly Longer Introduction . 21
4.3 Command Line Tool . 24
4.4 Using and Manipulating Objects and Fields . 27
4.5 Examining and Manipulating Particles . 30
4.6 Creating Derived Fields . 32
4.7 Parallel Computation With YT . 34
4.8 How to Make Plots . 36

5 Cookbook 39
5.1 Simple slice . 39
5.2 Simple projection . 42
5.3 Aligned cutting plane . 45
5.4 Sum mass in sphere . 47
5.5 Simple phase . 48
5.6 Simple profile . 49
5.7 Simple radial profile . 50
5.8 Halo finding . 51
5.9 Arbitrary vectors on slice . 52
5.10 Contours on slice . 52
5.11 Velocity vectors on slice . 53

i

5.12 Average value . 55
5.13 Find clumps . 56
5.14 Global phase plots . 58
5.15 Halo mass info . 59
5.16 Multi width save . 60
5.17 Zoomin frames . 64
5.18 Overplot particles . 69
5.19 Multi plot . 70
5.20 Multi plot 3x2 . 72
5.21 Time series phase . 75
5.22 Time series quantity . 77
5.23 Extract fixed resolution data . 79

6 Advanced yt Usage 81
6.1 Derived Quantities . 81
6.2 Plot Modification Mechanisms . 82
6.3 The Plugin File . 84
6.4 Creating 3D Datatypes . 85
6.5 Debugging and Driving YT . 85

7 Extensions 89
7.1 Halo Finding . 89
7.2 HaloProfiler . 92
7.3 Analyzing an Entire Simulation . 96

8 Contributing Code 99
8.1 Bug Fixes . 99
8.2 Licensing . 99
8.3 Fields and Extensions . 99
8.4 Analysis Code and Examples . 99

9 Asking for Help 101
9.1 The Mailing List . 101
9.2 Installation Issues . 101
9.3 Vanilla Usage Issues . 102
9.4 Customization and Scripting Issues . 102
9.5 How To Report A Bug . 102

10 FAQ 103
10.1 Why Python? . 103
10.2 Where can I learn more about Python? . 103
10.3 Who works on yt? . 103
10.4 What’s up with the names? . 103
10.5 Are there any restrictions on my use of yt? . 103
10.6 How do I know what the units returned are? . 104
10.7 What are all these .yt files? . 104
10.8 How can I help? . 104
10.9 Something has gone wrong. What do I do? . 104
10.10 How do I specify an axis? . 104
10.11 Where can I go for support? . 105

11 yt Methods 107
11.1 Introduction . 107
11.2 Analysis Requirements . 108
11.3 Community Engagement . 108

ii

11.4 Data Analysis Layer . 109
11.5 Plotting and Visualization Layer . 119
11.6 Constraints of Scale . 119
11.7 Frontends and Interfaces . 120
11.8 Embedding yt Inside Enzo . 120
11.9 Generalization to Other AMR Codes . 121
11.10 Immersive Visualization with VTK . 121
11.11 Community Involvement . 122
11.12 Future Directions . 122

12 API Documentation 125
12.1 yt.lagos Native AMR Data Structures . 125
12.2 yt.lagos Physical and Derived Data Objects . 131
12.3 yt.raven Plotting and Plot Interfaces . 140
12.4 yt.reason GUI Methods and Objects . 146
12.5 Convenience Functions . 146
12.6 yt.extensions Extensions API . 149
12.7 yt.fido File Storage and Management . 151
12.8 yt.lagos.ParallelTools Parallel Helper Functions . 152

13 ChangeLog 153
13.1 Version 1.5 . 153
13.2 Version 1.0 . 154

14 Indices and tables 155

Bibliography 157

Module Index 159

Index 161

iii

iv

yt Documentation, Release 1.5-beta

yt is a general-purpose toolkit designed to analyze, manage and plot adaptive mesh refinement data. It has been
designed from the ground-up to work natively with the Enzo code, but it also supports analysis of output from the
Orion code. It runs both interactively and non-interactively, and has been designed to support as many operations as
possible in parallel.

If you use yt in a paper, I highly encourage you to read about our policy on free repository space for analysis code!

Below you’ll find the table of contents. There’s a super-quick-start guide to interactive data analysis, a tour of the
objects and methodology of yt, a short cookbook, a guide extending, and – perhaps most important of all – a guide to
the classes and functions available!

For more information, please visit our homepage and for help, please see Asking for Help.

CONTENTS 1

http://lca.ucsd.edu/projects/enzo
http://yt.enzotools.org/

yt Documentation, Release 1.5-beta

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 History

My name is Matthew Turk, and I am the primary author of yt. I designed and implemented it during the course of my
graduate studies working with Prof. Tom Abel at Stanford University, under the auspices of the Department of Energy
through the SLAC National Accelerator Center and, briefly, at Los Alamos National Lab. It has evolved from a simple
data-reader and exporter into what I believe is a fully-featured toolkit for analysis and visualization of adaptive mesh
refinement data.

yt was designed to be a completely Free (as in beer and as in freedom – “free and libre” as the saying goes) user-
extensible framework for analyzing and visualizing adaptive mesh refinement data, currently working with both Enzo
and Orion data. It relies on no proprietary software – although it can be and has been extended to interface with
proprietary software and libraries – and has been designed from the ground up to enable users to be as immersed in
the data as they desire.

yt is currently being developed by a team consisting of me, Britton Smith, Stephen Skory, David Collins and Jeff
Oishi. All development is conducted in the open, accessible at http://yt.enzotools.org/ .

1.2 What yt is and is not

In some sense, yt is also designed to be rather utilitarian. By virtue of the fact that it has been written in an interpreted
language, it can be somewhat slower than purely C-based analysis codes, although I believe that to be mitigated by a
cleverness of algorithms and a substantially improved development time for the user. Several of the most computa-
tioanlly intensive problems have been written in C, or rely exclusively on C-based numerical libraries.

The primary goal has been, and will continue to be, to present an interface to the user that enables selection and
analysis of arbitrary subsets of data.

1.3 What functionality does yt offer?

yt has evolved substantially over the time of its development. Here is a non-comprehensive list of features:

• Data Objects

– Arbitrary data objects (Spheres, cylinders, rectangular prisms, arbitrary index selection)

– Covering grids (smoothed and raw) for automatic ghost-zone generation

– Identification of topologically-connected sets in arbitrary fields

– Projections, orthogonal slices, oblique slices

3

http://yt.enzotools.org/

yt Documentation, Release 1.5-beta

– Axially-aligned rays

– Memory-conserving 1-, 2- and 3-D profiles of arbitrary fields and objects.

– Halo-finding (HOP) algorithm with full particle information and sphere access

– Nearly all operations can be conducted in parallel

• Data access

– Arbitrary field definition

– Derived quantities (average values, spin parameter, bulk velocity, etc)

– Custom C- written HDF5 backend for packed and unpacked AMR, NumPy-based HDF4 backend

– CGS units used everywhere

– Per-user field and quantity plugins

• Plotting

– Mathtext TeX-like text formatting

– Slices, projections, oblique slices

– Profiles and phase diagrams

– Linked zooms, colormaps, and saving across multiple plots

– Contours, vector plots, annotated boxes, grid boundary plot overlays.

– Simple 3D plotting of phase plots and volume-rendered boxes via hooks into the S2PLOT library

• GUI

– Linked zooming via slider

– Interactive re-centering

– Length scales in human-readable coordinates

– Drawing of circles for generation of data objects and phase plots

– Image saving

– Arbitrary plots within the GUI namespace

– Full interpreter access to data objects

– Macros and other scripts able to be run from within the namespace

• Command-line tools

– Zooming movies

– Time-series movies

– HOP Halo Finding

• Access to components

– Monetary cost: FREE.

– Source code availability: FULL.

– Portability: YES.

4 Chapter 1. Introduction

yt Documentation, Release 1.5-beta

1.4 How do I cite yt?

If you use some of the advanced features of yt and would like to cite it in a publication, you should feel free to cite the
Proceedings Paper with the following BibTeX entry:

@InProceedings{SciPyProceedings_46,
author = {Matthew Turk},
title = {Analysis and Visualization of Multi-Scale Astrophysical

Simulations Using Python and NumPy},
booktitle = {Proceedings of the 7th Python in Science Conference},
pages = {46 - 50},
address = {Pasadena, CA USA},
year = {2008},
editor = {Ga\"el Varoquaux and Travis Vaught and Jarrod Millman},

}

1.4. How do I cite yt? 5

http://conference.scipy.org/proceedings/SciPy2008/paper_11

yt Documentation, Release 1.5-beta

6 Chapter 1. Introduction

CHAPTER

TWO

GETTING THE CODE

2.1 Installation

Warning: At the present time, binary packages are not supplied. The success of the installation script has largely
removed the need for binaries.

YT comes with a handy installation script. This script will download and install all the necessary dependencies –
from Python to YT – and then provide you with some information about how to modify your environment variables to
ensure it is loaded properly.

To get a copy of the YT install script for Linux and Unix machines, you can obtain it from the subversion repository.

$ svn export http://svn.enzotools.org/yt/branches/yt-1.5/doc/install_script.sh

If you’re running on Mac OSX, there is a different install script to run.

$ svn export http://svn.enzotools.org/yt/branches/yt-1.5/doc/install_script_osx.sh

Typically these scripts can just be run directly, but inside there are several options. Specifically, they can optionally
install wxPython for GUI support, ZLIB (typically a good idea on 64-bit systems) and Mercurial (a great idea if you
use the barn!) These options are all explained in Using the Installation Script.

2.1.1 Using the Installation Script

Note: The installation script is now the preferred means of installing a full set of packages – but if you are comfortable
with python, feel free to install the code yourself!

In the doc/ directory in the yt source distribution, there is a script, install_script.sh, designed to set up a full
installation of yt, along with all the necessary dependencies. You can run this script from within a checkout of yt or an
expanded tarball. If you are running on Mac OSX, you should run install_script_osx.sh instead.

Note: For convenience, yt will be installed in ‘develop’ mode, which means any changes in the source directory will
be included the next time you import yt!

There are several variabels you can set inside this script.

DEST_DIR This is the location to which all source code will be downloaded and resulting built libraries
installed.

HDF5_DIR If you wish to link against existing HDF5 (shared) libraries, put the root path to the installa-
tion here. Statically linked libraries will not work.

7

http://barn.enzotools.org

yt Documentation, Release 1.5-beta

INST_WXPYTHON This is a boolean, set to 0 or 1, that governs whether or not wxPython should be
installed.

INST_ZLIB This is a boolean, set to 0 or 1, that governs whether or not zlib should be installed.

INST_HG This is a boolean, set to 0 or 1, that governs whether or not mercurial should be installed. This
is useful if you want to use scripts from the barn.

YT_DIR If you’ve got a source checkout of YT somewhere else, point to it with this!

Warning: If you run into problems, particularly anything involving -fPIC, it is likely that there’s a problem
with static libraries. Try asking the installer script to install HDF5 and ZLIB.

2.2 Notes on Common Installation Locations

2.2.1 Ranger (TACC)

YT installs out of the box on Ranger using the installation script. Zlib must be built by the script. The pgi module
must first be swapped out for the gcc/4.3.2 module. This set of commands has been reported to work for this
purpose:

$ module unload mvapich-devel
$ module swap pgi gcc
$ module load mvapich-devel

Furthermore, errors citing GLIBC following logging out and logging back in can usually be solved by swapping out
gcc for pgi again.

2.2.2 Kraken (NICS)

YT installs out of the box on Kraken using the installation script. Zlib must be built by the script. Before you begin,
you must also ensure that the GNU programming environment is being used:

$ module swap PrgEnv-pgi PrgEnv-gnu

If you are going to try to run yt on the compute nodes, be aware that – while it does work – it will take a bit of effort
because the compute nodes run Compute Node Linux. As a result, all the libraries have to be compiled statically –
including all of Python and yt!

Stephen Skory has written a guide to getting Python compiled and running on the compute nodes on the wiki.

2.2.3 Verne (NICS)

YT installs out of the box on Verne using the installation script. Zlib must be built by the script. Before you begin,
you must also ensure that the GNU programming environment is being used:

$ module swap PE-pgi PE-gnu

8 Chapter 2. Getting the Code

http://barn.enzotools.org/
http://yt.enzotools.org/wiki/CrayXT5Installation

yt Documentation, Release 1.5-beta

2.2.4 Orange (SLAC)

YT installs out of the box if you either have the KIPAC gfortran installation in your path or use the
NUMPY_ARGS="--fcompiler=fake" option as in the script.

2.2.5 Red (SLAC)

YT installs out of the box if you use the NUMPY_ARGS="--fcompiler=fake" option as in the script.

2.2.6 Cobalt (NCSA)

YT installs out of the box on Cobalt using the installation script. However, Zlib and HDF5 must both be installed via
the installation script or linking errors will ensue. The GCC module, as opposed to the Intel Compiler module, should
be loaded, but this may not be a hard requirement.

2.2.7 OS X

OS X installation can be tricky. It is best to use the install_script_osx.sh file, which will download fresh
Python packages along with all dependencies. The Enthought Python Distribution is also a means of obtaining all these
dependencies; if you use EPD, you will have to set up the file hdf5.cfg to point to the correct HDF5 installation
from EPD. Users have reported some degree of success. Future versions of YT will leverage packages included in the
EPD.

2.3 Installing by Hand

If you’ve ever installed a python package by hand before, YT should be easy to install. You will need to install the
prequisites first. A driving factor in the development of yt over the months leading to release 1.5 has been the reduction
of dependencies. To that extent, only a few packages are required for the base usage, and a GUI toolkit if you are going
to use the graphical user interface, Reason.

• Python, at least version 2.4, but preferably 2.5 or 2.6.

• HDF5, the data storage backend used by Enzo and yt (if you can run Enzo, this is already installed!)

• NumPy, the fast numerical backend for Python

• MatPlotLib, the plotting package

• wxPython, the GUI toolkit (optional)

(If you are only interested in manipulating data without any graphical plotting or interfaces, you only need to install
HDF5, NumPy, and Python!)

Instructions for installing these packages is, unfortunately, beyond the scope of this document. However, there are
copious directions on how to do so elsewhere. You may also consider installing the Enthought Python Distribution,
which includes all of the necessary packages.

You’ll need to create a file in the YT directory called hdf5.cfg which points at the base of your HDF5 installation
tree – usually this will be something like /usr/local/. Underneath this directory YT will look for include and
lib directories containing the HDF5 files.

Once these dependencies have been met, YT can be installed in the standard manner:

2.3. Installing by Hand 9

http://www.enthought.com/products/epd.php
http://python.org/
http://www.hdfgroup.org/
http://numpy.scipy.org/
http://matplotlib.sf.net/
http://www.wxpython.org/
http://www.enthought.com/products/epd.php

yt Documentation, Release 1.5-beta

$ cd yt/
$ python2.6 setup.py install --prefix=/some/where/

2.4 Starting up YT

‘Starting up YT’ is a bit of a misnomer – there are many entry points to data analysis with YT. The simplest possible
way to access YT is with the Command Line Tool. You can try this out just by typing

$ yt

and following the help instructions!

10 Chapter 2. Getting the Code

CHAPTER

THREE

ANALYSIS PHILOSOPHY

Section author: J. S. Oishi <jsoishi@astro.berkeley.edu>

There are many tools available for analysis and visualization of AMR data; there are many just for enzo. So why
yt? Along the road to answering that question, we shall take a somewhat philosophical scenic route. For the more
pragmatically minded, the answer is simple: what yt does not yet do, you can make it do so. This is not as glib as it
may seem: it is in fact the main philosophical tennant that underlies yt. In this section, it is not our goal to show you
just how much yt already does. Instead, we will discuss how it is that yt does anything at all. In doing so, we hope
to give you a sense of whether or not yt will align with your science goals.

At its core, yt is not a set of scripts to visualize AMR data, nor is it a set of low-level routines that return a homo- or
even heterogeneous set of gridded data to your favorite scientific programming language–though yt incorporates both
of these things, if your favorite scientific language is python. Instead, yt provides a series of objects, some common
AMR code structures (such as hierarchies and levels in a nested mesh) and some physical (a cylinder, cube, or sphere
somewhere in the problem domain), that allow you to process AMR data in order to get at the fundamental underlying
physics.

3.1 Design Goals

yt evolved naturally out of three design goals, though when Matt was busy writing it, he never really thought about
them. Over time, it became clear that they are real and furthermore that they are important to understanding how to
use yt. These three goals are directed analysis, repeatability, and data exploration.

3.1.1 Directed Analysis: Answering a Question

One of the main motivators for yt is to make it possible to sit down with a definite question about an AMR dataset
and code up a script that will provide an answer to that question. Indeed much of its object-oriented nature can be
viewed as a way perform operations on a data object. Given that AMR simulations are usually used to track some kind
of structure formation, be it shocks, stars, or galaxies, the data object may not be the entire domain, but some region
within it that is interesting. This data object in hand, yt makes it easy (if possible: some tasks yt can merely make
possible) to manipulate that data in such a way to answer a question related to your research.

3.1.2 Repeatability

In any scientific analysis, being able to repeat the set of steps that prepared an answer or physical quantity is essential.
To that end, much of the usage of yt is focused around running scripts, describing actions and plots programmatically.
Being able to write a script or conducting a set of commands that will reproduce identical results is fundamentally
important, and yt will attempt to make that easy. It’s for this reason that the interactive features of yt are not always

11

mailto:jsoishi@astro.berkeley.edu

yt Documentation, Release 1.5-beta

as advanced as they might otherwise be. We are actively working on integrating the SAGE notebook system into yt,
which our preliminary tests suggest is a nice compromise between interactivity and repeatability.

3.1.3 Exploration

However, it is the serendipitous nature of science that often finding the right question is not obvious at first. This is
certainly true for astrophysical simulation, especially so for simulations of structure formation. What are we looking
for, and how will we know when we find it?

Quite often, the best way forward is to explore the simulation data as freely as possible. Without the ability for spot-
examination, serendipitous discovery or general wandering, the code would be simply a pipeline, rather than a general
tool. The flexible extensibility of yt, that is, the ability to create new derived quantities easily, as well as the ability to
extract and display data regions in a variety of ways allows for this exploration.

3.2 Object Methodology

yt follows a strong object-oriented methodology. There is no real global state of yt; all state is contained within
objects that encapsulate an AMR code object or physical region.

3.2.1 Physical Objects vs Code Objects

The best way to think about doing things with yt is to think first of objects. The AMR code puts a number of
objects on disk, and yt has a matching set of objects to mimic these closely as possible. Your code runs (hopefully) a
simulacrum of the physical universe, and thus in order to make sense of the output data, yt provides a set of objects
meant to mimic the kinds of physical regions and processes you are interested in. For example, in a simulation of
star formation out of some larger structure (the cosmic dark matter web, a turbulent molecular cloud), you might be
interested in a sphere one parsec in radius around the point of maximum density. In a simulation of an accretion disk,
you might want a cylindrical region of 1000 AU in radius and 10 AU in height with its axial vector aligned with the
net angular momentum vector, which may be arbitrary with respect to the simulation cardinal axes. These are physical
objects, and yt has a set of these too. Finally, you may wish to reduce the data to produce some essential data that
represent a specific process. These reductions are also objects, and they are included in yt as well.

Somewhat separate from this, but in the same spirit, are plots. In yt, plots are also objects that one can create,
manipulate, and save. In the case of plots, however, you tell yt what you want to see, and it can fetch data from the
appropriate source.

In list form,

Code Objects These are things that are on the disk that the AMR code knows about – things like grids,
data dumps, the grid hierarchy and so on.

Physical Objects These are objects like spheres, rectangular prisms, slices, and so on. These are collec-
tions of related data arranged by physical properties, and they are not necessarily associated with a
single code object.

Reduced Objects These are objects created by taking a set of data and reducing it into a smaller format,
suitable for a specific purpose. Histograms, 1-D profiles, and averages are all members of this
category.

Plots Plots are somewhat different than other objects, as they are neither physical nor code. Instead, the
plotting interface accepts information about what you want to see, then goes and fetches what is
necessary–from code, physical, and reduced objects as necessary.

12 Chapter 3. Analysis Philosophy

yt Documentation, Release 1.5-beta

3.3 Derived Fields and Derived Quantities

While the heart of yt is the large set of basic code, physical, reduced, and plot objects already developed, in a
metaphorical sense, its ‘soul’ is the fact that any of the objects can be used as starting points for creating fields and
quantities of your own devices. Derived quantities and derived fields are the physical objects yt creates from the
primitive variables the AMR code stores. These may or may not be the so-called primitive variables of fluid
dynamics (density, velocity, energy): they are whatever your AMR code writes to disk.

Derived quantities are those data products derived from these variables such that the total amount of returned data is
less than the number of cells. Derived fields, on the other hand, return a field with equal numbers of cells and the
same geometry as the primitive variables from which it was derived. For example, yt could compute the gravitational
potential at every point in space reconstructed from the density field.

yt already includes a large number of both derived fields and quantities, but its real power is that it is easy to create
your own. See Creating Derived Fields for detailed instructions on creating derived fields.

3.3. Derived Fields and Derived Quantities 13

yt Documentation, Release 1.5-beta

14 Chapter 3. Analysis Philosophy

CHAPTER

FOUR

HOW TO USE YT

There’s a lot inside yt. This section is designed to give you an idea of what’s there, what you can do with it, and how
to think about the yt environment.

Contents:

4.1 Quick Start Guide

If you’re impatient, like me, you probably just want to pull up some data and take a look at it. This guide will help you
out!

4.1.1 Starting IPython

If you’ve used the installation script that comes with yt, you should have an isolated environment containing
Python 2.5, Matplotlib, yt, IPython, and maybe wxPython. Be sure to finish up the instructions by prepending the
LD_LIBRARY_PATH, PATH and PYTHONPATH environment variables with the output of the script.

If you’ve done that, go ahead and start up our interactive yt environment:

$ iyt

It should start you up in an interpreter, and the namespace will be populated with the stuff you need. Really, the
command iyt just opens up IPython and loads up yt, with some special commands available for you.

You’re all set, so let’s move on to the next step – actually opening up your data!

4.1.2 Opening Your Data File

You’ll need to know the location of the parameter file from the output you want to look at. Let’s pretend, for the
sake of argument, it’s /home/mturk/data/galaxy1200.dir/galaxy1200 and that we have all the right
permissions. So let’s open it, and see what the maximum density is.

Note: In IPython, you get filename completion! So hit tab and it’ll guess at what you want to open.

In [1]: pf = load("/home/mturk/data/galaxy1200.dir/galaxy1200")

In [2]: v, c = pf.h.find_max("Density")

And then in the variable v we have the value of the most dense cell, and in c we have the location of that point.

15

yt Documentation, Release 1.5-beta

4.1.3 Making Plots

But hey, what good is the data if we can’t see it? So let’s make some plots! First we need to get a
PlotCollectionInteractive object, and then we’ll add some slices and projections to it. Note that we use 0,
1, 2 to refer to ‘x’, ‘y’, ‘z’ axes.

In [3]: pc = PlotCollectionInteractive(pf)
In [4]: pc.add_slice("Temperature", 0)
yt.raven INFO 2008-10-25 11:42:58,429 Added slice of Temperature at x = 0.953125 with ’center’ = [0.953125, 0.8046875, 0.6171875]
Out[4]: <yt.raven.PlotTypes.SlicePlot instance at 0x9882cec>

In [5]: pc.add_slice("Density", 0)
yt.raven INFO 2008-10-25 11:43:45,608 Added slice of Density at x = 0.953125 with ’center’ = [0.953125, 0.8046875, 0.6171875]
Out[5]: <yt.raven.PlotTypes.SlicePlot instance at 0xab83eec>

A window should now pop up for each of these plots. One will be a line integral through the simulation, and the other
will be a slice. (If you had used the PlotCollection object, they’d be created off-screen – this is the right way to
make plots programmatically in scripts.)

We can also adjust the width of the plots very easily:

In [6]: pc.set_width(100, ’kpc’)

The center is set to the most dense location by default. (For more information, see the documentation for
PlotCollection.)

4.1.4 Saving Plots

Even though the windows are open, we can save these to the file system at high resolution.

In [7]: pc.save()
Out[7]: [’galaxy1200_Slice_x_Temperature.png’, ’galaxy1200_Slice_x_Density.png’]

16 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

4.1. Quick Start Guide 17

yt Documentation, Release 1.5-beta

And that’s it! The plots get saved out, and it returns to you a list of their filenames.

Note: The save command will add some data to the end of the filename – this helps to keep track of what each saved
file is.

4.1.5 A Few More Plots

You can also add profiles – radial or otherwise – and phase diagrams very easily.

In [8]: pc.add_profile_sphere(100.0, ’kpc’, ["Density", "Temperature"])
Out[8]: <yt.raven.PlotTypes.Profile1DPlot instance at 0xada03ec>

In [9]: pc.add_phase_sphere(100.0, ’kpc’, [’Density’, ’Temperature’,
...: ’VelocityMagnitude’])

Out[9]: <yt.raven.PlotTypes.PhasePlot instance at 0xada91ef>

18 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

4.1. Quick Start Guide 19

yt Documentation, Release 1.5-beta

Note that the phase plots default to showing a weighted-average in each bin – weighted by the cell mass in solar
masses. If you want to see a distribution of mass, you’ll need to specify you don’t want an average:

In [10]: pc.add_phase_sphere(100.0, ’kpc’, [’Density’, ’Temperature’,
...: ’CellMassMsun’], weight=None)

Out[10]: <yt.raven.PlotTypes.PhasePlot instance at 0xada91ef>

20 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

4.2 A Slightly Longer Introduction

This section will contain a short (but a bit longer than Quick Start Guide) introduction to analyzing and plotting data
with yt, using a scripting interface. If you’re not familiar with Python, you might be able to pick it up from this
section, but you’d probably be better off reading one of the many other sources listed in Where can I learn more about
Python?.)

Note: If you know Python, you might enjoy reading Cookbook!

4.2.1 Writing a Script

The very first step to using yt is to open up a text editor, write a little script, and then run it. You can use your favorite
text editor (for instance, vim) and then save it as something ending in .py. At the command line, you can execute this
script by calling the name of the python interpreter that you used to install yt and then the name of the script:

$ python2.6 my_script.py

This will load the interpreter, read and run the script my_script.py and then terminate regardless of the success or
failure of the script.

4.2. A Slightly Longer Introduction 21

http://www.vim.org/

yt Documentation, Release 1.5-beta

To have the python interpreter load, run, and then return an interactive prompt, you can execute the script with

$ python2.6 -i my_script.py

There’s a bit more information about invocation of python in Debugging and Driving YT .

Okay, so now we know how to launch a script, but what do we put in it? Let’s start with one of the most simple things
to do. Let’s load some data and find the most dense point. Here’s a sample little script that loads our data, prints the
maximum density, and the location of that maximum density.

We first import yt – the very first line in this sample script loads yt, brings a bunch of variables, functions and classes
into the local namespace, and initializes a few settings.

The next line loads the parameter file into memory, and then we find the maximum density.

from yt.mods import *
pf = load("RedshiftOutput0010.dir/RedshiftOutput0010")
value, position = pf.h.find_max("Density")

print "Maximum density: %0.5e at %s" % (value, position)

The last line in that script is a format string which prints the value and the position. You can find a number of sample
recipes in the Cookbook. Let’s move on to making a script that makes some plots before terminating.

4.2.2 Plots and Plot Types

The next step we might want to take is to visually inspect our data. yt has a facility for creating several linked plots –
yt.raven.PlotCollection handles adding multiple plots that are linked by width and parameter files. We can
add a couple slices, along each axis and then zoom in. This is one of the most fundamental idioms in yt – during my
thesis work, almost all of my scripts started out like this.

from yt.mods import *
pf = load("DataDump0020.dir/DataDump0020")
pc = PlotCollection(pf)

pc.add_slice("Density", 0)
pc.add_slice("Temperature", 0)

pc.set_width(1000.0, ’au’)

pc.save()

This particular script will create a PlotCollection centered on the most dense point (unless you feed in a center, it
searches for and finds the most dense point) add a Density slice, a Temperature slice, set the width to 1000.0 AU, and
then save the lot of them.

For more complicated examples, be sure to check out the Cookbook and the API for yt.raven.PlotCollection
as well as the yt.raven documentation as a whole.

4.2.3 Plot Modification

yt comes with a number of mechanisms of adding visual and textual information to plots. These include grid bound-
aries, scale boxes, vector fields, contour fields and text annotations. More documentation is available in Plot Modifi-
cation Mechanisms, with full API documentation in yt.raven.Callbacks.

22 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

The plot modifications all follow a uniform interface; the concept is that each plot has a base plot, and on top of that
a set of callbacks that are applied, in order, to modify it and produce a final result. To apply a new modification, the
modify dictionary of the plot is accessed, and from that the appropriate modification keyword is selected. Each of
these accepts a set of arguments.

For example, from start to finish, this command will output a slice through the most dense point in the simulation,
taken along the x axis, with the grid boundaries drawn.

from yt.mods import *
p = plots.get_slice("my_data0001", "Density", 0)
p.modify["grids"]()
p.save_image("my_data0001_Density")

To add on a contour of the field “Temperature”, you can add on another modification:

p.modify["contour"]("Temperature")
p.save_image("my_data0001_Density_Temperature")

The plots returned by the class:~yt.raven.PlotCollection methods also respect this interface, which means that you can
also do things like:

from yt.mods import *
pf = load("my_data0001")
pc = PlotCollection(pf)
for ax in range(3): pc.add_slice("Density", ax).modify["grids"]()
pc.save("my_data0001")

Wrapped up into this snippet are the methods for adding slices along all three axes and then instantly applying to them
the grid boundary outlines.

A full list of the different possibilities for plot modifications is available in Plot Modification Mechanisms.

4.2.4 Time Series Movies

Note: The Command Line Tool can also do time series plots. Here we showcase how to do them from a script so that
more modifications can be made.

The process of constructing a time series movie involves, very simply, constructing a set of plots over a set of parameter
files. By iterating over a set of data files, or over a set of numbers, a series of plots can be output. These can then be
concatenated into a movie to show changes in features and fields over time.

For example, the simplest possible time series movie script would be:

from yt.mods import *
for i in range(1000):

p = plots.get_slice("my_data%04i" % i, "Density", 0)
p.save_image("my_data%04i" % i)

Because we are using the full API here, more complicated visualizations can be built up. For instance, with the
addition of

p.set_width(10, ’kpc’)
p.set_zlim(1e-27, 1e-24)

the width of each image will be 10 kpc and the color limits will be set to 1e-27 and 1e-24.

4.2. A Slightly Longer Introduction 23

yt Documentation, Release 1.5-beta

4.2.5 Even More!

There’s quite a bit more that you can do with yt from a scripting perspective – not only can you use the modules that
come with yt, but you can use all of the modules available for Python as a whole. SciPy is a good starting point, and
there are lots of fun subpackages as well as other scientific plotting packages available.

If you find something cool that you find a neat way to apply to Adaptive Mesh Refinement data, you should be sure to
email The Mailing List to tell us about it!

4.3 Command Line Tool

yt comes with a command-line tool, known as yt, that exposes much of the functionality that would normally be
accessible through a scripts. This is designed to make the process of making immediate plots much easier. All of the
functionality is described in the help strings:

$ yt help

and then the subcommands all have help options as well:

$ yt plot --help

In order to actually run the command, you’ll need to tell it which outputs to operate on. The yt command-line tool
has three mechanisms for specifying outputs. It will do its best to guess based on the information its provided.

You can specify a base name for a parameter file and then a start and stop number (and optionally a skip parameter):

$ yt plot --basename=RedshiftOutput --skip 5 10 50

This will run your plot command on RedshiftOutput 10 through 50, but only on multiples of five. (And if your
output is in a subdirectory, yt will check there too, don’t worry!)

You can specify a single parameter file:

$ yt plot RedshiftOutput0010

This will run your plot command on RedshiftOutput0010.

Alternatively, you can specify multiple parameter files on the command line:

$ yt plot RedshiftOutput0010 RedshiftOutput0020 RedshiftOutput0030

This will plot RedshiftOutput0010, RedshiftOutput0020, and RedshiftOutput0030.

4.3.1 Simple Statistics

To get information about a given parameter file, including the maximum density, the level information, the smallest
cell size and some timing information, use the stats command:

$ yt stats RedshiftOutput0005

24 Chapter 4. How to Use YT

http://www.scipy.org

yt Documentation, Release 1.5-beta

0 4 32768
1 34 253496
2 304 525784

342 812048

z = 0.00000000
t = 6.46750660e+02 = 4.57786981e+17 s = 1.45163299e+10 years

Smallest Cell:
Width: 7.812e-03 1
Width: 7.812e-03 unitary
Width: 3.906e-02 mpch
Width: 3.906e-02 mpchcm
Width: 6.010e-02 mpc
Width: 7.812e-01 aye
Width: 3.906e+01 kpch
Width: 3.906e+01 kpchcm
Width: 6.010e+01 kpc
Width: 3.906e+04 pch
Width: 3.906e+04 pchcm
Width: 6.010e+04 pc
Width: 8.059e+09 auh
Width: 8.059e+09 auhcm
Width: 1.240e+10 au
Width: 8.659e+11 rsunh
Width: 8.659e+11 rsunhcm
Width: 1.332e+12 rsun
Width: 7.488e+17 milesh
Width: 7.488e+17 mileshcm
Width: 1.152e+18 miles
Width: 1.205e+23 cmh
Width: 1.205e+23 cmhcm
Width: 1.854e+23 cm

Maximum density: 4.43898e-27 at (0.94921875, 0.80078125, 0.61328125)

4.3.2 Plots

The command line tool can make either projections or slices. To make a projection, supply it with the -p option:

$ yt plot -p RedshiftOutput0005

If you don’t supply the -p option, it will only slice rather than project through the object. Weights can also be supplied
for an average along the line of sight. This command defaults to the full width, centered on the most dense point, and
outputting along all three axes. The help command has more information:

Create a set of images

Usage:
yt plot [ARGS...]

Options:
-h, --help show this help message and exit
-w WIDTH, --width=WIDTH

4.3. Command Line Tool 25

yt Documentation, Release 1.5-beta

Width in specified units
-u UNIT, --unit=UNIT

Desired units
-b BASENAME, --basename=BASENAME

Basename of parameter files
-p, --projection Use a projection rather than a slice
-c CENTER, --center=CENTER

Center (-1,-1,-1 for max)
-z ZLIM, --zlim=ZLIM

Color limits (min, max)
-a AXIS, --axis=AXIS

Axis (4 for all three)
-f FIELD, --field=FIELD

Field to color by
-g WEIGHT, --weight=WEIGHT

Field to weight projections with
-s SKIP, --skip=SKIP

Skip factor for outputs
--colormap=CMAP Colormap name
-o OUTPUT, --output=OUTPUT

Folder in which to place output images
--show-grids Show the grid boundaries

4.3.3 Zoomin Movies

The command line tool also has facilities for outputting a set of frames that zoom in on a central position. This works
on a single dataset and can zoom in on projections or slices:

$ yt zoomin RedshiftOutput0005

However, as with the other commands, you will likely want to specify your own options.

Create a set of zoomin frames

Options:
-h, --help show this help message and exit
--max-width=MAX_WIDTH

Maximum width in code units
--min-width=MIN_WIDTH

Minimum width in units of smallest dx (default: 50)
-p, --projection Use a projection rather than a slice
-a AXIS, --axis=AXIS

Axis (4 for all three)
-f FIELD, --field=FIELD

Field to color by
-g WEIGHT, --weight=WEIGHT

Field to weight projections with
-z ZLIM, --zlim=ZLIM

Color limits (min, max)
-n NFRAMES, --nframes=NFRAMES

Number of frames to generate
-o OUTPUT, --output=OUTPUT

Folder in which to place output images
--colormap=CMAP Colormap name
--unit-boxes Display helpful unit boxes
--dex=DEX Number of dex above min to display

26 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

-t TEXT, --text=TEXT
Textual annotation

4.3.4 Halo Profiler

4.4 Using and Manipulating Objects and Fields

To generate standard plots, objects rarely need to be directly constructed. However, for detailed data inspection as well
as hand-crafted derived data, objects can be exceptionally useful and even necessary.

4.4.1 Accessing Fields in Objects

yt utilizes load-on-demand objects to represent physical regions in space. (See Object Methodology.) Data objects in
yt all respect the following protocol for accessing data:

my_object["Density"]

where "Density" can be any field name. The full list of objects is available in Available Objects, and information
about how to create an object can be found in Creating 3D Datatypes. The field is returned as a single, flattened array
without spatial information. The best mechanism for manipulating spatial data is the CoveringGridBase object.

The full list of fields that are available can be found as a property of the Hierarchy or Static Output object that you
wish to access. This property is calculated every time the object is instantiated. The full list of fields that have been
identified in the output file, which need no processing (besides unit conversion) are in the property field_list
and the full list of potentially-accessible derived fields (see Derived Fields and Derived Quantities) is available in the
property derived_field_list. You can see these by examining the two properties:

pf = load("my_data")
print pf.h.field_list
print pf.h.derived_field_list

When a field is added, it is added to a container that hangs off of the parameter file, as well. All of the field creation
options (Field Options) are accessible through this object:

pf = load("my_data")
print pf.h.field_info["Pressure"].units

This is a fast way to examine the units of a given field, and additionally you can use
yt.lagos.DerivedField.get_source() to get the source code:

field = pf.h.field_info["Pressure"]
print field.get_source()

4.4.2 Available Objects

Objects are instantiated by direct access of a hierarchy. Each of the objects that can be generated by a hierarchy are in
fact fully-fledged data objects respecting the standard protocol for interaction.

The following objects are available, all of which hang off of the hierarchy object. To access them, you would do
something like this (as for a region):

4.4. Using and Manipulating Objects and Fields 27

yt Documentation, Release 1.5-beta

from yt.mods import *
pf = load("RedshiftOutput0005")
reg = pf.h.region([0.5, 0.5, 0.5], [0.0, 0.0, 0.0], [1.0, 1.0, 1.0])

class covering_grid(self, level, left_edge, right_edge, dims, fields=None, pf=None, num_ghost_zones=0, use_pbar=True, **field_parameters):()
(This is a proxy for yt.lagos.AMRCoveringGridBase.) The data object returned will consider grids up
to level in generating fixed resolution data between left_edge and right_edge that is dims (3-values) on a side.

class cutting(self, normal, center, fields=None, node_name=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRCuttingPlaneBase.) The Cutting Plane slices at an oblique angle,
where we use the normal vector and the center to define the viewing plane. The ‘up’ direction is guessed at
automatically.

class disk(self, center, normal, radius, height, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRCylinderBase.) By providing a center, a normal, a radius and a height
we can define a cylinder of any proportion. Only cells whose centers are within the cylinder will be selected.

class extracted_region(self, base_region, indices, force_refresh=True, **field_parameters):()
(This is a proxy for yt.lagos.ExtractedRegionBase.) Returns an instance of AMR3DData, or pre-
pares one. Usually only used as a base class. Note that center is supplied, but only used for fields and quantities
that require it.

class grid(self, id, filename=None, hierarchy=None):()
(This is a proxy for yt.lagos.EnzoGridBase.) Returns an instance of EnzoGrid with id, associated with
filename and hierarchy.

class grid_collection(self, center, grid_list, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRGridCollectionBase.) By selecting an arbitrary grid_list, we can
act on those grids. Child cells are not returned.

class ortho_ray(self, axis, coords, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMROrthoRayBase.) Dimensionality is reduced to one, and an ordered list
of points at an (x,y) tuple along axis are available.

class periodic_region(self, center, left_edge, right_edge, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRPeriodicRegionBase.) We create an object with a set of three
left_edge coordinates, three right_edge coordinates, and a center that need not be the center.

class periodic_region_strict(self, center, left_edge, right_edge, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRPeriodicRegionStrictBase.) We create an object with a set of
three left_edge coordinates, three right_edge coordinates, and a center that need not be the center.

class proj(self, axis, field, weight_field=None, max_level=None, center=None, pf=None, source=None, node_name=None, field_cuts=None, serialize=True, **field_parameters):()
(This is a proxy for yt.lagos.AMRProjBase.) AMRProj is a projection of a field along an axis. The field
can have an associated weight_field, in which case the values are multiplied by a weight before being summed,
and then divided by the sum of that weight.

class ray(self, start_point, end_point, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRRayBase.) We accept a start point and an end point and then get all the
data between those two.

class region(self, center, left_edge, right_edge, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRRegionBase.) We create an object with a set of three left_edge coordi-
nates, three right_edge coordinates, and a center that need not be the center.

class region_strict(self, center, left_edge, right_edge, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRRegionStrictBase.) We create an object with a set of three left_edge
coordinates, three right_edge coordinates, and a center that need not be the center.

28 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

class slice(self, axis, coord, fields=None, center=None, pf=None, node_name=False, **field_parameters):()
(This is a proxy for yt.lagos.AMRSliceBase.) Slice along axisHow do I specify an axis?, at the coordinate
coord. Optionally supply fields.

class smoothed_covering_grid(self, *args, **field_parameters):()
(This is a proxy for yt.lagos.AMRSmoothedCoveringGridBase.) The data object returned will con-
sider grids up to level in generating fixed resolution data between left_edge and right_edge that is dims (3-values)
on a side.

class sphere(self, center, radius, fields=None, pf=None, **field_parameters):()
(This is a proxy for yt.lagos.AMRSphereBase.) The most famous of all the data objects, we define it via
a center and a radius.

4.4.3 Storing and Loading Objects

Often, when operating interactively or via the scripting interface, it is convenient to save an object or multiple objects
out to disk and then restart the calculation later. Personally, I found this most useful when dealing with identification
of clumps and contours (see Cookbook for a recipe on how to find clumps and the API documentation for both
ContourFinder and Clump) where the identification step can be quite time-consuming, but the analysis may be
relatively fast.

Typically, the save and load operations are used on 3D data objects. yt has a separate set of serialization operations
for 2D objects such as projections. yt will save out 3D objects to disk under the presupposition that the construction
of the objects is the difficult part, rather than the generation of the data – this means that you can save out an object as
a description of how to recreate it in space, but not the actual data arrays affiliated with that object. The information
that is saved includes the parameter file off of which the object “hangs.” It is this piece of information that is the most
difficult; the object, when reloaded, must be able to reconstruct a parameter file from whatever limited information it
has in the save file.

To do this, yt is able to identify parameter files based on a “hash” generated from the base file name, the “Current-
TimeIdentifier”, and the simulation time. These three characteristics should never be changed outside of a simulation,
they are independent of the file location on disk, and in conjunction they should be uniquely identifying. (This process
is all done in fido via ParameterFileStore.)

To save an object, you can either save it in the .yt file affiliated with the hierarchy (What are all these .yt files?) or as
a standalone file. For instance, using save_object() we can save a sphere.

from yt.mods import *
pf = load("my_data")
sp = pf.h.sphere([0.5, 0.5, 0.5], 10.0/pf[’kpc’])

pf.h.save_object(sp, "sphere_to_analyze_later")

In a later session, we can load it using save_object():

from yt.mods import *

pf = load("my_data")
sphere_to_analyze = pf.h.load_object("sphere_to_analyze_later")

Additionally, if we want to store the object independent of the .yt file, we can save the object directly:

from yt.mods import *

pf = load("my_data")
sp = pf.h.sphere([0.5, 0.5, 0.5], 10.0/pf[’kpc’])

4.4. Using and Manipulating Objects and Fields 29

yt Documentation, Release 1.5-beta

sp.save_object("my_sphere", "my_storage_file.cpkl")

This will store the object as my_sphere in the file my_storage_file.cpkl, which will be created or accessed
using the standard python module shelve. Note that if a filename is not supplied, it will be saved via the hierarchy,
as above.

To re-load an object saved this way, you can use the shelve module directly:

from yt.mods import *
import shelve

obj_file = shelve.open("my_storage_file.cpkl")
pf, obj = obj_file["my_sphere"]

Note here that this behaves slightly differently than above – we do not need to load the parameter file ourselves, as the
load process actually does that for us! Additionally, we can store multiple objects in a single shelve file, so we have to
call the sphere by name.

Note: It’s also possible to use the standard cPickle module for loading and storing objects – so in theory you could
even save a list of objects!

This method works for clumps, as well, and the entire clump hierarchy will be stored and restored upon load.

4.5 Examining and Manipulating Particles

yt has support for reading and manipulating particles. You can access the particles as you would any other data field;
additionally, derived fields that operate on particles can be added as would any other derived field, as long as the
parameter particle_type is set to True in the call to add_field(). However, with that, there are a few caveats.
Particle support in yt is not by any means an afterthought, but it was developed relatively late in comparison to baryon
and field-based analysis, and is not as mature.

Note: If you are having trouble with particles, email the mailing list!

4.5.1 Using Particles

Many particle operations can be conducted obliquely, which will serve to reduce memory usage as well as handle any
problems that might arise from spatial selection of particles.

For instance, Halo objects have a number of operations that can transparently calculate center of mass of parti-
cles, bulk velocity, and so on. Use those instead of obtaining the fields directly. Furthermore, any of the spatially-
addressable objects described in Using and Manipulating Objects and Fields will automatically select particles based
on the region of space they describe, and the quantities (Derived Quantities) in those objects will operate on particle
fields.

(For information on halo finding, see Halo finding and Halo mass info.)

Warning: If you use the built-in methods of interacting with particles, you should be well off. Otherwise, there
are caveats!

30 Chapter 4. How to Use YT

http://docs.python.org/library/shelve.html#module-shelve
http://docs.python.org/library/pickle.html#module-cPickle

yt Documentation, Release 1.5-beta

4.5.2 Selection By Type

Unfortunately, Enzo’s mechanism for storing particle type is inconsistent. The parameter ParticleTypeInFile
controls whether or not the field particle_type is written to disk; if it is set to 1, the field will be written, but
the default is 0 where the field is not written. Without the field particle_type the discriminator between particle
types is exclusively based on the field creation_time. Particles with creation_time greater than 0.0 are star
particles and those with creation_time equal to zero are dark matter particles.

For simulations only including dark matter particles, this is not important, as all of the particles will be of the same
type. However, selection of – for instance – star particles in other simulations will require some care, and you will
need to do it differently depending on the value of ParticleTypeInFile.

Selecting Particles By Creation Time

To select particles based on creation time, you must first create an index array. Python (and NumPy) allow indexing
based on boolean values, so we will do that. Here is an example of selecting all star particles in the domain.

from yt.mods import *
pf = load("galaxy1200.dir/galaxy1200")
dd = pf.h.all_data()

star_particles = dd["creation_time"] > 0.0
print dd["ParticleMassMsun"][star_particles].max()
print dd["ParticleMassMsun"][star_particles].min()
print "Number of star particles", star_particles.sum()

Selecting Particles By Particle Type

In Enzo, star particles are type 2. So we will select using the boolean array (as in Selecting Particles By Creation Time)
to select only the star particles.

from yt.mods import *
pf = load("galaxy1200.dir/galaxy1200")
dd = pf.h.all_data()

star_particles = dd["particle_type"] == 2
print dd["ParticleMassMsun"][star_particles].max()
print dd["ParticleMassMsun"][star_particles].min()
print "Number of star particles", star_particles.sum()

4.5.3 Memory

Unfortunately, as of right now, particle loading via spatially-selected objects can be memory intensive. The process
that yt goes through to load particles into memory in a 3D data object is to separate the grids into two classes:

• Fully-contained grids

• Partially-contained grids

For the grids in the former category, the full set of particles residing in those grids are loaded. The ones in the second
require that a FakeGridForParticles be created so that the particles residing in the region (as determined
by their values of particle_position_x, particle_position_y and particle_position_z, which
must be loaded from disk) can be selected and cut from the full set of particles. This requires that the full position
information for the particles be loaded, which increases overall memory usage.

4.5. Examining and Manipulating Particles 31

yt Documentation, Release 1.5-beta

4.5.4 The Future

The next version of yt will have a completely rewritten particle infrastructure. This version is currently in the testing
phase, but has shown to reduce memory overhead substantially as well as increase speed by a factor of a few. Both
spatial selection (selection within an object) and selection by type are extremely promising.

4.6 Creating Derived Fields

One of the more powerful means of extending yt is through the usage of derived fields. These are fields that describe
a value at each cell in a simulation.

4.6.1 Defining a New Field

So once a new field has been conceived of, the best way to create it is to construct a function that performs an array
operation – operating on a collection of data, neutral to its size, shape, and type. (All fields should be provided as
64-bit floats.)

A simple example of this is the pressure field, which demonstrates the ease of this approach.

def _Pressure(field, data):
return (data.pf["Gamma"] - 1.0) * \

data["Density"] * data["ThermalEnergy"]

Note that we do a couple different things here. We access the “Gamma” parameter from the parameter file, we access
the “Density” field and we access the “ThermalEnergy” field. “ThermalEnergy” is, in fact, another derived field!
(“ThermalEnergy” deals with the distinction in storage of energy between dual energy formalism and non-DEF.) We
don’t do any loops, we don’t do any type-checking, we can simply multiply the three items together.

Once we’ve defined our function, we need to notify yt that the field is available. The add_field() function is the
means of doing this; it has a number of fairly specific parameters that can be passed in, but here we’ll only look at the
most basic ones needed for a simple scalar baryon field.

add_field("Pressure", function=_Pressure, units=r"\rm{dyne}/\rm{cm}^{2}")

We feed it the name of the field, the name of the function, and the units. Note that the units parameter is a “raw” string,
with some LaTeX-style formatting – Matplotlib actually has a MathText rendering engine, so if you include LaTeX it
will be rendered appropriately.

We suggest that you name the function that creates a derived field with the intended field name prefixed by a single
underscore, as in the _Pressure example above.

Note one last thing about this definition; we do not do unit conversion. All of the fields fed into the field are pre-
supposed to be in CGS. If the field does not need any constants applied after that, you are done. If it does, you should
define a second function that applies the proper multiple in order to return the desired units and use the argument
convert_function to add_field to point to it.

If you find yourself using the same custom-defined fields over and over, you should put them in your plugins file as
described in The Plugin File.

32 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

4.6.2 Some More Complicated Examples

But what if we want to do some more fancy stuff? Here’s an example of getting parameters from the data object and
using those to define the field; specifically, here we obtain the center and height_vector parameters and use
those to define an angle of declination of a point with respect to a disk.

def _DiskAngle(field, data):
We make both r_vec and h_vec into unit vectors
center = data.get_field_parameter("center")
r_vec = na.array([data["x"] - center[0],

data["y"] - center[1],
data["z"] - center[2]])

r_vec = r_vec/na.sqrt((r_vec**2.0).sum(axis=0))
h_vec = na.array(data.get_field_parameter("height_vector"))
dp = r_vec[0,:] * h_vec[0] \

+ r_vec[1,:] * h_vec[1] \
+ r_vec[2,:] * h_vec[2]

return na.arccos(dp)
add_field("DiskAngle", take_log=False,

validators=[ValidateParameter("height_vector"),
ValidateParameter("center")],

display_field=False)

Note that we have added a few parameters below the main function; we specify that we do not wish to display this
field as logged, that we require both height_vector and center to be present in a given data object we wish
to calculate this for, and we say that it should not be displayed in a drop-down box of fields to display. This is done
through the parameter validators, which accepts a list of FieldValidator objects. These objects define the way
in which the field is generated, and when it is able to be created. In this case, we mandate that parameters center and
height_vector are set before creating the field. These are set via set_field_parameter(), which can be called
on any object that has fields.

We can also define vector fields.

def _SpecificAngularMomentum(field, data):
if data.has_field_parameter("bulk_velocity"):

bv = data.get_field_parameter("bulk_velocity")
else: bv = na.zeros(3, dtype=’float64’)
xv = data["x-velocity"] - bv[0]
yv = data["y-velocity"] - bv[1]
zv = data["z-velocity"] - bv[2]
center = data.get_field_parameter(’center’)
coords = na.array([data[’x’],data[’y’],data[’z’]], dtype=’float64’)
new_shape = tuple([3] + [1]*(len(coords.shape)-1))
r_vec = coords - na.reshape(center,new_shape)
v_vec = na.array([xv,yv,zv], dtype=’float64’)
return na.cross(r_vec, v_vec, axis=0)

def _convertSpecificAngularMomentum(data):
return data.convert("cm")

add_field("SpecificAngularMomentum",
convert_function=_convertSpecificAngularMomentum, vector_field=True,
units=r"\rm{cm}^2/\rm{s}", validators=[ValidateParameter(’center’)])

Here we define the SpecificAngularMomentum field, optionally taking a bulk_velocity, and returning a vector
field that needs conversion by the function _convertSpecificAngularMomentum.

4.6. Creating Derived Fields 33

yt Documentation, Release 1.5-beta

4.6.3 Field Options

The arguments to add_field() are passed on to the constructor of DerivedField. add_field() takes care
of finding the arguments function and convert_function if it can, however. There are a number of options available, but
the only mandatory ones are name and possibly function.

name This is the name of the field – how you refer to it. For instance, Pressure or H2I_Fraction.

function This is a function handle that defines the field

convert_function This is the function that converts the field to CGS. All inputs to this function are
mandated to already be in CGS.

units This is a mathtext (LaTeX-like) string that describes the units.

projected_units This is a mathtext (LaTeX-like) string that describes the units if the field has been
projected without a weighting.

display_name This is a name used in the plots

take_log This is True or False and describes whether the field should be logged when plotted.

particle_type Is this field a particle field?

validators (Advanced) This is a list of FieldValidator objects, for instance to mandate spatial
data.

vector_field (Advanced) Is this field more than one value per cell?

display_field (Advanced) Should this field appear in the dropdown box in Reason?

not_in_all (Advanced) If this is True, the field may not be in all the grids.

projection_conversion (Advanced) Which unit should we multiply by in a projection?

4.6.4 How Do Units Work?

Everything is done under the assumption that all of the native Enzo fields that yt knows about are converted to cgs
before being handed to any processing routines.

4.6.5 Which Enzo Fields Does yt Know About?

• Density

• Temperature

• Gas Energy

• Total Energy

• [xyz]-velocity

• Species fields: HI, HII, Electron, HeI, HeII, HeIII, HM, H2I, H2II, DI, DII, HDI

• Particle mass, velocity,

4.7 Parallel Computation With YT

YT has been instrumented with the ability to compute many – most, even – quantities in parallel. This utilizes the
package mpi4py to parallelize using the Message Passing Interface, typically installed on clusters.

34 Chapter 4. How to Use YT

http://code.google.com/p/mpi4py

yt Documentation, Release 1.5-beta

4.7.1 Capabilities

Currently, YT is able to perform the following actions in parallel:

• Projections

• Slices

• Cutting planes (oblique slices)

• Derived Quantities (total mass, angular momentum, etc)

• 1-, 2- and 3-D profiles

• Halo finding

This list covers just about every action YT can take! Additionally, almost all scripts will benefit from parallelization
without any modification. The goal of Parallel-YT has been to retain API compatibility and abstract all parallelism.

4.7.2 Setting Up Parallel YT

To run scripts in parallel, you must first install mpi4py. Instructions for doing so are provided on the MPI4Py website.
Once that has been accomplished, you’re all done! You just need to launch your scripts with mpirun and signal to
YT that you want to run them in parallel.

For instance, the following script, which we’ll save as my_script.py:

from yt.mods import *
pf = load("RD0035/RedshiftOutput0035")
v, c = pf.h.find_max("Density")
print v, c
pc = PlotCollection(pf, center = [0.5, 0.5, 0.5])
pc.add_projection("Density", 0)
pc.save()

Will execute the finding of the maximum density and the projection in parallel if launched in parallel. To do so, at the
command line you would execute

$ mpirun -np 16 python2.6 my_script.py --parallel

if you wanted it to run in parallel. If you run into problems, the you can use Remote and Disconnected Debugging to
examine what went wrong.

Warning: If you manually interact with the filesystem, not through YT, you will have to ensure that you only
execute your functions on the root processor. You can do this with the function :func:only_on_root.

It’s important to note that all of the processes listed in capabilities work – and no additional work is necessary to paral-
lelize those processes. Furthermore, the yt command itself recognizes the --parallel option, so those commands
will work in parallel as well.

4.7.3 Types of Parallelism

In order to divide up the work, YT will attempt to send different tasks to different processors. However, to minimize
inter-process communication, YT will decompose the information in different ways based on the task.

4.7. Parallel Computation With YT 35

http://code.google.com/p/mpi4py

yt Documentation, Release 1.5-beta

Spatial Decomposition

During this process, the hierarchy will be decomposed along either all three axes or along an image plane, if the
process is that of projection. This type of parallelism is overall less efficient than grid-based parallelism, but it has
been shown to obtain good results overall.

Grid Decomposition

The alternative to spatial decomposition is a simple round-robin of the grids. This process alows YT to pool data
access to a given Enzo data file, which ultimately results in faster read times and better parallelism.

4.8 How to Make Plots

Through the plotting interface, you can have yt automatically generate many of the analysis objects available to you!

The primary plotting interface is through a PlotCollection instantiated with a given parameter file and (option-
ally) a center. See Making Plots for a brief example of how to generate a PlotCollection.

4.8.1 Two-Dimensional Images

Whenever a two-dimensional image is created, the plotting object first obtains the necessary data at the highest reso-
lution. Every time an image is requested of it – for instance, when the width or field is changed – this high-resolution
data is then pixelized and placed in a buffer of fixed size.

Slices are axially-aligned images of data selected at a fixed point on an axis; these are the fastest type of two-
dimensional image, as only the correct coordinate data is read from disk and then plotted.

Cutting planes are oblique slices, aligned with a given normal vector. These can be used for face-on images of disks
and other objects, as well as a rotational slices. They work just like slices in other ways, but they tend to be a bit
slower.

Projections are closer in style to profiles than slices. They can exist either as a summation of the data along every
possible ray through the simulation, or an average value along every possible ray. If a weight_field is provided, then
the data returned is an average; typically you will want to weight with Density. If you do not supply a weight_field
then the returned data is a column sum. These fields are stored in between invocations – this allows for speedier access
to a relatively slow process!

4.8.2 Profiles and Phase Plots

Profiles and phase plots provide identical API to the generation of profiles themselves, but with a couple convenience
interfaces. You can have the plot collection generate a sphere automatically for either one:

pc.add_phase_sphere(100.0, ’au’, ["Density", "Temperature", "CellMassMsun"],
weight = None)

This will generate a sphere, a phase plot, and then return to you the plot object.

36 Chapter 4. How to Use YT

yt Documentation, Release 1.5-beta

4.8.3 Interactive Plotting

Thanks to the pylab interface in Matplotlib, we have an interactive plot collection available for usage within IPython.
Instead of PlotCollection, use PlotCollectionInteractive – this will generate automatically updating
GUI windows with the plots inside them.

4.8.4 Callbacks

Callbacks are means of adding things on top of existing plots – like vectors, overplotted lines, and so on and so forth.
They have to be added to the plot objects themselves, rather than the PlotCollection. You can add them like so:

p = pc.add_slice("Density", 0)
p.modify["grids"]()

Each Callback has to be instantiated, and then added. You can also access the plot objects inside the PlotCollection
directly:

pc.add_slice("Density", 0)
pc.plots[-1].modify["grids"]()

Note that if you are plotting interactively, the PlotCollection will need to have redraw called on it.

For more information about Callbacks, see the API reference .

4.8. How to Make Plots 37

yt Documentation, Release 1.5-beta

38 Chapter 4. How to Use YT

CHAPTER

FIVE

COOKBOOK

yt scripts can be a bit intimidating, and at times a bit obtuse. But there’s a lot you can do, and this section of the
manual will assist with figuring out how to do some fairly common tasks – which can lead to combining these, with
other Python code, into more complicated and advanced tasks.

Note: All of these scripts are located in the mercurial repository at http://hg.enzotools.org/cookbook/

5.1 Simple slice

This is a simple recipe to show how to open a dataset and then plot a slice through it, centered at its most dense point.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/simple_slice.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
pc.add_slice("Density", 0) # 0 = x-axis
pc.add_slice("Density", 1) # 1 = y-axis
pc.add_slice("Density", 2) # 2 = z-axis
pc.set_width(1.5, ’mpc’) # change width of all plots in pc
pc.save(fn) # save all plots

39

http://hg.enzotools.org/cookbook/
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_slice.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_slice.py

yt Documentation, Release 1.5-beta

Sample Output

40 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

5.1. Simple slice 41

yt Documentation, Release 1.5-beta

5.2 Simple projection

This is a simple recipe to show how to open a dataset and then take a weighted-average projection through it, centered
at its most dense point.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/simple_projection.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
pc.add_projection("Density", 0, weight="Density") # 0 = x-axis
pc.add_projection("Density", 1, weight="Density") # 1 = y-axis
pc.add_projection("Density", 2, weight="Density") # 2 = z-axis
pc.set_width(1.5, ’mpc’) # change width of all plots in pc
pc.save(fn) # save all plots

42 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_projection.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_projection.py

yt Documentation, Release 1.5-beta

Sample Output

5.2. Simple projection 43

yt Documentation, Release 1.5-beta

44 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

5.3 Aligned cutting plane

This is a recipe to show how to open a dataset, calculate the angular momentum vector in a sphere, and then use that
to take an oblique slice.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/aligned_cutting_plane.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data

Now let’s create a data object that describes the region of which we wish to
take the angular momentum.

First find the most dense point, which will serve as our center. We get the
most dense value for free, too! This is an operation on the ’hierarchy’,
rather than the parameter file.
v, c = pf.h.find_max("Density")
print "Found highest density of %0.3e at %s" % (v, c)

5.3. Aligned cutting plane 45

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/aligned_cutting_plane.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/aligned_cutting_plane.py

yt Documentation, Release 1.5-beta

Now let’s get a sphere centered at this most dense point, c. We have to
convert ’5’ into Mpc, which means we have to use unit conversions provided by
the parameter file. To convert *into* code units, we divide. (To convert
back, we multiply.)
sp = pf.h.sphere(c, 5.0 / pf["mpc"])
Now we have an object which contains all of the data within 5 megaparsecs of
the most dense point. So we want to calculate the angular momentum vector of
this 5 Mpc set of gas, and yt provides the facility for that inside a
"derived quantity" property. So we use that, and it returns a vector.
L = sp.quantities["AngularMomentumVector"]()

print "Angular momentum vector: %s" % (L)

pc = PlotCollection(pf, center=c) # Make a new plot holder
pc.add_cutting_plane("Density", L) # Add our oblique slice
pc.set_width(2.5, ’mpc’) # change the width
pc.save(fn) # save out with the pf as a prefix to the image name

46 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

Sample Output

5.4 Sum mass in sphere

This recipe shows how to take a sphere, centered on the most dense point, and sum up the total mass in baryons and
particles within that sphere. Note that this recipe will take advantage of multiple CPUs if executed with mpirun and
supplied the –parallel command line argument.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/sum_mass_in_sphere.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
v, c = pf.h.find_max("Density")
sp = pf.h.sphere(c, 1.0/pf["mpc"])

baryon_mass, particle_mass = sp.quantities["TotalQuantity"](
["CellMassMsun", "ParticleMassMsun"], lazy_reader=True)

5.4. Sum mass in sphere 47

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/sum_mass_in_sphere.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/sum_mass_in_sphere.py

yt Documentation, Release 1.5-beta

print "Total mass in sphere is %0.5e (gas = %0.5e / particles = %0.5e)" % \
(baryon_mass + particle_mass, baryon_mass, particle_mass)

5.5 Simple phase

This is a simple recipe to show how to open a dataset and then plot a phase plot showing mass distribution in the rho-T
plane.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/simple_phase.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
pc.add_phase_sphere(10.0, "mpc", # how many of which unit at pc.center

["Density", "Temperature", "CellMassMsun"], # our fields: x, y, color
weight=None) # don’t take the average value in a cell, just sum them up

pc.save(fn) # save all plots

48 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_phase.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_phase.py

yt Documentation, Release 1.5-beta

Sample Output

5.6 Simple profile

This is a simple recipe to show how to open a dataset and then plot a profile showing mass-weighted average Temper-
ature as a function of Density inside a sphere.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/simple_profile.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
pc.add_profile_sphere(10.0, "mpc", # how many of which unit at pc.center

["Density", "Temperature"], weight="CellMassMsun") # x, y, weight
pc.save(fn) # save all plots

5.6. Simple profile 49

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_profile.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_profile.py

yt Documentation, Release 1.5-beta

Sample Output

5.7 Simple radial profile

This is a simple recipe to show how to open a dataset and then plot a radial profile showing mass-weighted average
Density inside a sphere.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/simple_radial_profile.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
pc.add_profile_sphere(10.0, "mpc", # how many of which unit at pc.center

["RadiusMpc", "Density"], weight="CellMassMsun", # x, y, weight
x_bounds = (1e-3, 10.0)) # cut out zero-radius and tiny-radius cells

But ... weight defaults to CellMassMsun, so we’re being redundant here!
pc.save(fn) # save all plots

50 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_radial_profile.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/simple_radial_profile.py

yt Documentation, Release 1.5-beta

Sample Output

5.8 Halo finding

This script shows the simples way of getting halo information.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/halo_finding.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
halos = HaloFinder(pf)
halos.write_out("%s_halos.txt" % pf)

Sample Output

RedshiftOutput0005_halos.txt

5.8. Halo finding 51

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/halo_finding.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/halo_finding.py

yt Documentation, Release 1.5-beta

HALOS FOUND WITH HOP
Group Mass # part max densx y z center-of-mass x y z vx vy vz max_r

0 3.349212591e+11 822 8.530865463e+03 9.474301815e-01 8.003573695e-01 6.135765693e-01 9.525055889e-01 8.015884263e-01 6.138615237e-01 1.705851494e+06 -1.249580137e+06 2.916880874e+05 3.264138852e-02
1 2.758414750e+11 677 8.202446551e+03 1.796526850e-01 7.625952107e-01 6.479191838e-01 1.800868084e-01 7.631527126e-01 6.476983977e-01 -2.122530412e+06 1.410529735e+06 -5.558529287e+05 3.346727634e-02
2 1.947595643e+11 478 4.555572625e+03 5.532828495e-01 3.234508336e-01 1.526681708e-01 5.502839176e-01 3.227445666e-01 1.463095679e-01 4.768146446e+05 5.700263869e+05 7.768371888e+05 2.631150506e-02
3 1.377170141e+11 338 3.242180406e+03 9.754010795e-01 7.632175520e-01 7.384444522e-01 9.754894863e-01 7.616535505e-01 7.426239921e-01 3.147013348e+05 6.912953967e+05 -3.158456248e+06 2.418755287e-02
4 1.075659518e+11 264 2.767986753e+03 9.062823292e-01 1.429594372e-01 6.518503248e-01 9.092065242e-01 1.360712140e-01 6.495222326e-01 -5.615869189e+05 -6.366013443e+05 1.681235144e+05 2.159628487e-02
5 8.311914461e+10 204 2.716905006e+03 7.370274945e-01 1.881616252e-02 2.038525792e-01 7.366971198e-01 1.833388582e-02 2.035289977e-01 1.663413733e+06 7.167873345e+04 -6.195454974e+05 2.220572281e-02
6 7.985957031e+10 196 3.728141647e+03 7.032178905e-01 4.612143097e-01 2.543813295e-01 7.029408322e-01 4.608586672e-01 2.556131836e-01 5.110343768e+05 7.263383815e+05 -1.357792572e+05 2.069425029e-02
7 7.374786850e+10 181 2.707414503e+03 8.504477878e-01 4.341667808e-03 1.388950015e-01 8.498287193e-01 3.363578745e-03 1.389072946e-01 -6.683213708e+05 -4.607395365e+05 1.314755282e+06 2.009615603e-02
8 5.419042271e+10 133 2.289804554e+03 3.776429757e-01 7.283994005e-01 6.446504099e-01 3.777433187e-01 7.269790920e-01 6.443397020e-01 -1.617485927e+06 1.406450423e+06 -3.942225913e+05 1.616496998e-02
9 5.256063556e+10 129 1.414660466e+03 8.358023677e-02 7.730337546e-01 6.259202318e-01 8.158372163e-02 7.746775670e-01 6.237812975e-01 -2.255594150e+05 -1.998432996e+06 1.754192578e+06 1.681364212e-02
10 3.381808334e+10 83 7.426291275e+02 7.586783008e-01 5.565828318e-01 2.499949337e-01 7.615372697e-01 5.602183627e-01 2.516651310e-01 -2.892032842e+05 -4.116040472e+04 1.797132864e+06 1.463921311e-02
11 3.218829620e+10 79 1.065896463e+03 7.922319010e-01 6.849626178e-01 3.618562838e-01 7.917738127e-01 6.854323398e-01 3.638244474e-01 2.104084591e+06 -8.047160687e+05 1.661570843e+05 1.497200164e-02
12 2.770638154e+10 68 6.274043905e+02 8.762047753e-01 7.390402458e-01 3.784275359e-01 8.745118455e-01 7.389001762e-01 3.775805493e-01 3.619881778e+05 -1.400392085e+06 1.095641286e+06 1.167731823e-02
13 2.648404117e+10 65 8.422493962e+02 7.145945477e-01 5.507938405e-01 4.833302836e-02 7.136183340e-01 5.517347708e-01 4.777013265e-02 1.228141163e+06 -9.438224166e+05 9.374767573e+05 1.181447170e-02
14 2.526170081e+10 62 5.496262872e+02 2.661371336e-01 4.547039190e-01 2.264844106e-01 2.654044204e-01 4.529011416e-01 2.280199884e-01 5.174012916e+05 1.096946582e+06 -5.720811299e+05 1.202792277e-02
15 2.363191366e+10 58 6.261403270e+02 5.537976778e-01 9.321957347e-01 8.870031559e-01 5.536553100e-01 9.301505474e-01 8.885347547e-01 5.270620662e+05 -7.490051223e+04 -1.859688949e+06 1.073805491e-02
16 2.240957330e+10 55 7.216382764e+02 2.869443986e-01 6.260920367e-01 1.654761036e-01 2.872379828e-01 6.265364612e-01 1.664006039e-01 -3.583231204e+05 3.269624338e+02 1.092627021e+06 1.221875078e-02
17 2.077978615e+10 51 7.207463353e+02 7.925281425e-01 6.605537872e-01 2.972905663e-01 7.922277380e-01 6.615778826e-01 2.962863502e-01 1.213295975e+06 -1.790677992e+06 2.286521021e+06 1.019183230e-02
18 1.996489258e+10 49 5.250658436e+02 8.289750280e-01 5.813463800e-01 5.786615919e-01 8.301333188e-01 5.818982175e-01 5.784557151e-01 1.797734829e+06 2.592494092e+06 6.666032929e+05 9.710146517e-03
19 1.955744579e+10 48 4.827141235e+02 8.332161433e-01 3.625128149e-01 7.783504082e-01 8.324564064e-01 3.624546115e-01 7.766859379e-01 2.889876718e+05 -2.176831107e+05 -8.195252305e+05 1.219180959e-02

5.9 Arbitrary vectors on slice

This is a simple recipe to show how to open a dataset, plot a slice through it, and add some extra vectors on top. Here
we’ve used the imaginary fields magnetic_field_x, magnetic_field_y and magnetic_field_z.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/arbitrary_vectors_on_slice.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load
ax = 0 # x-axis

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
p = pc.add_slice("Density", ax)
v1 = "magnetic_field_%s" % (axis_names[x_dict[ax]])
v2 = "magnetic_field_%s" % (axis_names[y_dict[ax]])
p.modify["quiver"](v1, v2) # This takes a few arguments, but we’ll use the defaults

here. You can control the ’skip’ factor in the
vectors.

pc.set_width(2.5, ’mpc’) # change width of all plots in pc
pc.save(fn) # save all plots

5.10 Contours on slice

This is a simple recipe to show how to open a dataset, plot a slice through it, and add contours of another quantity on
top.

52 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/arbitrary_vectors_on_slice.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/arbitrary_vectors_on_slice.py

yt Documentation, Release 1.5-beta

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/contours_on_slice.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
p = pc.add_slice("Density", 0) # 0 = x-axis
p.modify["contour"]("Temperature")
pc.set_width(1.5, ’mpc’) # change width of all plots in pc
pc.save(fn) # save all plots

Sample Output

5.11 Velocity vectors on slice

This is a simple recipe to show how to open a dataset, plot a slice through it, and add velocity vectors on top.

5.11. Velocity vectors on slice 53

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/contours_on_slice.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/contours_on_slice.py

yt Documentation, Release 1.5-beta

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/velocity_vectors_on_slice.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf) # defaults to center at most dense point
p = pc.add_slice("Density", 0) # 0 = x-axis
p.modify["velocity"]() # This takes a few arguments, but we’ll use the defaults

here. You can control the ’skip’ factor in the
vectors.

pc.set_width(2.5, ’mpc’) # change width of all plots in pc
pc.save(fn) # save all plots

54 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/velocity_vectors_on_slice.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/velocity_vectors_on_slice.py

yt Documentation, Release 1.5-beta

Sample Output

5.12 Average value

This recipe finds the average value of a quantity through the entire box. Note that this recipe will take advantage of
multiple CPUs if executed with mpirun and supplied the –parallel command line argument.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/average_value.py .

from yt.mods import *

fn = "RedshiftOutput0005" # parameter file to load
pf = load(fn) # load data

field = "Temperature" # The field to average
weight = "CellMassMsun" # The weight for the average

dd = pf.h.all_data() # This is a region describing the entire box,
but note it doesn’t read anything in yet!

We now use our ’quantities’ call to get the average quantity
average_value = dd.quantities["WeightedAverageQuantity"](

5.12. Average value 55

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/average_value.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/average_value.py

yt Documentation, Release 1.5-beta

field, weight, lazy_reader=True)

print "Average %s (weighted by %s) is %0.5e" % (field, weight, average_value)

5.13 Find clumps

This is a recipe to show how to find topologicall connected sets of cells inside a dataset. It returns these clumps
and they can be inspected or visualized as would any other data object. More detail on this method can be found in
astro-ph/0806.1653.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/find_clumps.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load
field = "Density" # this is the field we look for contours over -- we could do

this over anything. Other common choices are ’AveragedDensity’
and ’Dark_Matter_Density’.

step = 10.0 # This is the multiplicative interval between contours.

pf = load(fn) # load data

We want to find clumps over the entire dataset, so we’ll just grab the whole
thing! This is a convenience parameter that prepares an object that covers
the whole domain. Note, though, that it will load on demand and not before!
data_source = pf.h.all_data()

Now we set some sane min/max values between which we want to find contours.
This is how we tell the clump finder what to look for -- it won’t look for
contours connected below or above these threshold values.
c_min = 10**na.floor(na.log10(data_source[field]).min())
c_max = 10**na.floor(na.log10(data_source[field]).max()+1)

Now find get our ’base’ clump -- this one just covers the whole domain.
master_clump = Clump(data_source, None, field)

This next command accepts our base clump and we say the range between which
we want to contour. It recursively finds clumps within the master clump, at
intervals defined by the step size we feed it. The current value is
multiplied by step size, rather than added to it -- so this means if you
want to look in log10 space intervals, you would supply step = 10.0.
find_clumps(master_clump, c_min, c_max, step)

As it goes, it appends the information about all the sub-clumps to the
master-clump. Among different ways we can examine it, there’s a convenience
function for outputting the full hierarchy to a file.
f = open(’%s_clump_hierarchy.txt’ % pf,’w’)
write_clump_hierarchy(master_clump,0,f)
f.close()

We can also output some handy information, as well.
f = open(’%s_clumps.txt’ % pf,’w’)
write_clumps(master_clump,0,f)
f.close()

56 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/find_clumps.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/find_clumps.py

yt Documentation, Release 1.5-beta

If you’d like to visualize these clumps, a list of clumps can be supplied to
the "clumps" callback on a plot.

Sample Output

RedshiftOutput0005_clump_hierarchy.txt

Clump at level 0:
Cells: 714638
Mass: 2.867994e+12 Msolar
Jeans Mass (vol-weighted): 1.945683e+10 Msolar
Jeans Mass (mass-weighted): 4.959227e+10 Msolar
Max grid level: 2
Min number density: 7.299408e-09 cm^-3
Max number density: 1.594844e-03 cm^-3

Clump at level 1:
Cells: 136
Mass: 3.150459e+10 Msolar
Jeans Mass (vol-weighted): 2.313084e+11 Msolar
Jeans Mass (mass-weighted): 6.949434e+10 Msolar
Max grid level: 2
Min number density: 3.599559e-06 cm^-3
Max number density: 4.158763e-04 cm^-3

Clump at level 2:
Cells: 1
Mass: 3.698225e+09 Msolar
Jeans Mass (vol-weighted): 3.532331e+09 Msolar
Jeans Mass (mass-weighted): 3.532331e+09 Msolar
Max grid level: 2
Min number density: 4.144234e-04 cm^-3
Max number density: 4.144234e-04 cm^-3

Clump at level 1:
Cells: 944
Mass: 1.363021e+11 Msolar
Jeans Mass (vol-weighted): 3.786709e+11 Msolar
Jeans Mass (mass-weighted): 1.977858e+11 Msolar
Max grid level: 2
Min number density: 3.593325e-06 cm^-3
Max number density: 7.125931e-04 cm^-3

Clump at level 2:
Cells: 2
Mass: 1.205801e+10 Msolar
Jeans Mass (vol-weighted): 2.555663e+09 Msolar
Jeans Mass (mass-weighted): 2.555660e+09 Msolar
Max grid level: 2
Min number density: 6.737547e-04 cm^-3
Max number density: 6.774670e-04 cm^-3

RedshiftOutput0005_clumps.txt

5.13. Find clumps 57

yt Documentation, Release 1.5-beta

Clump:
Cells: 1
Mass: 3.698225e+09 Msolar
Jeans Mass (vol-weighted): 3.532331e+09 Msolar
Jeans Mass (mass-weighted): 3.532331e+09 Msolar
Max grid level: 2
Min number density: 4.144234e-04 cm^-3
Max number density: 4.144234e-04 cm^-3

Clump:
Cells: 2
Mass: 1.205801e+10 Msolar
Jeans Mass (vol-weighted): 2.555663e+09 Msolar
Jeans Mass (mass-weighted): 2.555660e+09 Msolar
Max grid level: 2
Min number density: 6.737547e-04 cm^-3
Max number density: 6.774670e-04 cm^-3

5.14 Global phase plots

This is a simple recipe to show how to open a dataset and then plot a couple phase diagrams, save them, and quit. Note
that this recipe will take advantage of multiple CPUs if executed with mpirun and supplied the –parallel command line
argument.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/global_phase_plots.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
dd = pf.h.all_data() # This is an object that describes the entire box
pc = PlotCollection(pf) # defaults to center at most dense point

We plot the average x-velocity (mass-weighted) in our object as a function of
Electron_Density and Temperature
plot=pc.add_phase_object(dd, ["Electron_Density","Temperature","x-velocity"]

lazy_reader = True)

We now plot the average value of x-velocity as a function of temperature
plot=pc.add_profile_object(dd, ["Temperature", "x-velocity"],

lazy_reader = True)

Finally, the average electron density as a function of the magnitude of the
velocity
plot=pc.add_profile_object(dd, ["Electron_Density", "VelocityMagnitude"],

lazy_reader = True)
pc.save() # save all plots

58 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/global_phase_plots.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/global_phase_plots.py

yt Documentation, Release 1.5-beta

5.15 Halo mass info

This recipe finds halos and then prints out information about them. Note that this recipe will take advantage of multiple
CPUs if executed with mpirun and supplied the –parallel command line argument.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/halo_mass_info.py .

from yt.mods import *

fn = "RedshiftOutput0005" # parameter file to load
pf = load(fn) # load data

First we run our halo finder to identify all the halos in the dataset. This
can take arguments, but the default are pretty sane.
halos = HaloFinder(pf)

f = open("%s_halo_info.txt" % pf, "w")

Now, for every halo, we get the baryon data and examine it.
for halo in halos:

The halo has a property called ’get_sphere’ that obtains a sphere
centered on the point of maximum density (or the center of mass, if that
argument is supplied) and with the radius the maximum particle radius of
that halo.
sphere = halo.get_sphere()
We use the quantities[] method to get the total mass in baryons and in
particles.
baryon_mass, particle_mass = sphere.quantities["TotalQuantity"](

["CellMassMsun", "ParticleMassMsun"], lazy_reader=True)
Now we print out this information, along with the ID.
f.write("Total mass in HOP group %s is %0.5e (gas = %0.5e / particles = %0.5e)\n" % \

(halo.id, baryon_mass + particle_mass, baryon_mass, particle_mass))
f.close()

Sample Output

RedshiftOutput0005_halo_info.txt

Total mass in HOP group 0 is 4.83999e+11 (gas = 6.41403e+10 / particles = 4.19859e+11)
Total mass in HOP group 1 is 4.21962e+11 (gas = 6.07831e+10 / particles = 3.61179e+11)
Total mass in HOP group 2 is 2.62190e+11 (gas = 3.86250e+10 / particles = 2.23565e+11)
Total mass in HOP group 3 is 1.95698e+11 (gas = 3.06816e+10 / particles = 1.65016e+11)
Total mass in HOP group 4 is 1.41878e+11 (gas = 2.12738e+10 / particles = 1.20604e+11)
Total mass in HOP group 5 is 1.16476e+11 (gas = 1.82813e+10 / particles = 9.81947e+10)
Total mass in HOP group 6 is 1.24188e+11 (gas = 2.27342e+10 / particles = 1.01454e+11)
Total mass in HOP group 7 is 7.82627e+10 (gas = 1.47010e+10 / particles = 6.35617e+10)
Total mass in HOP group 8 is 6.61199e+10 (gas = 6.63271e+09 / particles = 5.94872e+10)
Total mass in HOP group 9 is 7.63012e+10 (gas = 1.27395e+10 / particles = 6.35617e+10)
Total mass in HOP group 10 is 4.28431e+10 (gas = 4.95060e+09 / particles = 3.78926e+10)
Total mass in HOP group 11 is 4.31030e+10 (gas = 3.58066e+09 / particles = 3.95223e+10)
Total mass in HOP group 12 is 2.92851e+10 (gas = 1.17132e+09 / particles = 2.81138e+10)
Total mass in HOP group 13 is 3.13247e+10 (gas = 1.98850e+09 / particles = 2.93362e+10)
Total mass in HOP group 14 is 2.97262e+10 (gas = 7.97481e+08 / particles = 2.89287e+10)
Total mass in HOP group 15 is 2.42277e+10 (gas = 5.95763e+08 / particles = 2.36319e+10)

5.15. Halo mass info 59

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/halo_mass_info.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/halo_mass_info.py

yt Documentation, Release 1.5-beta

Total mass in HOP group 16 is 2.76922e+10 (gas = 1.20811e+09 / particles = 2.64840e+10)
Total mass in HOP group 17 is 2.18954e+10 (gas = 1.11559e+09 / particles = 2.07798e+10)
Total mass in HOP group 18 is 2.09572e+10 (gas = 5.84902e+08 / particles = 2.03723e+10)
Total mass in HOP group 19 is 2.55289e+10 (gas = 2.71190e+09 / particles = 2.28170e+10)

5.16 Multi width save

This recipe shows a slightly-fancy way to save a couple plots at a lot of different widths, ensuring that across the plots
we have the same min/max for the colorbar.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/multi_width_save.py .

from yt.mods import *

fn = "RedshiftOutput0005" # parameter file to load
pf = load(fn) # load data

pc = PlotCollection(pf, center=[0.5, 0.5, 0.5]) # We get our Plot Collection object

Note that when we save, we will be using string formatting to change all of
the bits in here. You can add more, or remove some, if you like.
fn = "%(bn)s_%(width)010i_%(unit)s" # template for image file names

Now let’s set up the widths we want to use.
widths = [(2, "mpc"), (1000, ’kpc’)]
We could add on more of these with:
widths += [...]

Now we add a slice for x and y.
pc.add_slice("Density", 0)
pc.add_slice("Density", 1)

So for all of our widths, we will set the width of the plot and then make
sure that our limits for the colorbar are the min/max across the three plots.
Then we save! Each saved file will have a descriptive name, so we can tell
them apart.

for width, unit in widths:
pc.set_width(width,unit)
vmin = min([p.norm.vmin for p in pc.plots])
vmax = max([p.norm.vmax for p in pc.plots])
pc.set_zlim(vmin,vmax)
This is the string formatting we talked about earlier
d = {’bn’:pf.basename, ’width’:width, ’unit’:unit}
pc.save(fn % d)

60 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/multi_width_save.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/multi_width_save.py

yt Documentation, Release 1.5-beta

Sample Output

5.16. Multi width save 61

yt Documentation, Release 1.5-beta

62 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

5.16. Multi width save 63

yt Documentation, Release 1.5-beta

5.17 Zoomin frames

This is a recipe that takes a slice through the most dense point, then creates a bunch of frames as it zooms in. It’s
important to note that this particular recipe is provided to show how to be more flexible and add annotations and the
like – the base system, of a zoomin, is provided by the yt zoomin command.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/zoomin_frames.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load
n_frames = 5 # This is the number of frames to make -- below, you can see how

this is used.
min_dx = 40 # This is the minimum size in smallest_dx of our last frame.

Usually it should be set to something like 400, but for THIS
dataset, we actually don’t have that great of resolution.

pf = load(fn) # load data
frame_template = "frame_%05i" # Template for frame filenames

pc = PlotCollection(pf, center=[0.5, 0.5, 0.5]) # We make a plot collection that defaults to being

64 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/zoomin_frames.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/zoomin_frames.py

yt Documentation, Release 1.5-beta

centered at the most dense point.
p = pc.add_slice("Density", 2) # Add our slice, along z
p.modify["contour"]("Temperature") # We’ll contour in temperature -- this kind

of modification can’t be done on the command
line, so that’s why we have the recipe!

What we do now is a bit fun. "enumerate" returns a tuple for every item --
the index of the item, and the item itself. This saves us having to write
something like "i = 0" and then inside the loop "i += 1" for ever loop. The
argument to enumerate is the ’logspace’ function, which takes a minimum and a
maximum and the number of items to generate. It returns 10^power of each
item it generates.
for i,v in enumerate(na.logspace(

0, na.log10(pf.h.get_smallest_dx()*min_dx), n_frames)):
We set our width as necessary for this frame ...
pc.set_width(v,’1’)
... and we save!
pc.save(frame_template % (i))

Sample Output

5.17. Zoomin frames 65

yt Documentation, Release 1.5-beta

66 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

5.17. Zoomin frames 67

yt Documentation, Release 1.5-beta

68 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

5.18 Overplot particles

This is a simple recipe to show how to open a dataset, plot a projection through it, and add particles on top

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/overplot_particles.py .

from yt.mods import * # set up our namespace

fn = "RedshiftOutput0005" # parameter file to load

pf = load(fn) # load data
pc = PlotCollection(pf, center=[0.5,0.5,0.5]) # defaults to center at most dense point
p = pc.add_projection("Density", 0) # 0 = x-axis
"nparticles" is slightly more efficient than "particles"
p.modify["nparticles"](1.0) # 1.0 is the ’width’ we want for our slab of

particles -- this governs the allowable locations
of particles that show up on the image
NOTE: we can also supply a *ptype* to cut based
on a given (integer) particle type

pc.set_width(1.0, ’1’) # change width of our plot to the full domain
pc.save(fn) # save all plots

5.18. Overplot particles 69

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/overplot_particles.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/overplot_particles.py

yt Documentation, Release 1.5-beta

Sample Output

5.19 Multi plot

This is a simple recipe to show how to open a dataset and then plot a slice through it, centered at its most dense point.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/multi_plot.py .

from yt.mods import * # set up our namespace
import matplotlib.colorbar as cb

fn = "RedshiftOutput0005" # parameter file to load
orient = ’horizontal’

pf = load(fn) # load data

There’s a lot in here:
From this we get a containing figure, a list-of-lists of axes into which we
can place plots, and some axes that we’ll put colorbars.
We feed it:
Number of plots on the x-axis, number of plots on the y-axis, and how we

70 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/multi_plot.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/multi_plot.py

yt Documentation, Release 1.5-beta

want our colorbars oriented. (This governs where they will go, too.
bw is the base-width in inches, but 4 is about right for most cases.
fig, axes, colorbars = raven.get_multi_plot(2, 1, colorbar=orient, bw = 4)

We’ll use a plot collection, just for convenience’s sake
pc = PlotCollection(pf, center=[0.5, 0.5, 0.5])

Now we add a slice and set the colormap of that slice, but note that we’re
feeding it an axes -- the zeroth row, the zeroth column, and telling the plot
"Don’t make a colorbar." We’ll make one ourselves.
p = pc.add_slice("Density", 0, figure = fig, axes = axes[0][0], use_colorbar=False)
p.set_cmap("bds_highcontrast") # this is our colormap

We do this again, but this time we take the 1-index column.
p = pc.add_slice("Temperature", 0, figure=fig, axes=axes[0][1], use_colorbar=False)
p.set_cmap("hot") # a different colormap

pc.set_width(5.0, ’mpc’) # change width of both plots

Each ’p’ is a plot -- this is the Density plot and the Temperature plot.
Each ’cax’ is a colorbar-container, into which we’ll put a colorbar.
zip means, give these two me together.
for p, cax in zip(pc.plots, colorbars):

Now we make a colorbar, using the ’image’ attribute of the plot.
’image’ is usually not accessed; we’re making a special exception here,
though. ’image’ will tell the colorbar what the limits of the data are.
cbar = cb.Colorbar(cax, p.image, orientation=orient)
Now, we have to do a tiny bit of magic -- we tell the plot what its
colorbar is, and then we tell the plot to set the label of that colorbar.
p.colorbar = cbar
p._autoset_label()

And now we’re done! Note that we’re calling a method of the figure, not the
PlotCollection.
fig.savefig("%s" % pf)

5.19. Multi plot 71

yt Documentation, Release 1.5-beta

Sample Output

5.20 Multi plot 3x2

This is a simple recipe to show how to open a dataset and then plot a slice through it, centered at its most dense point.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/multi_plot_3x2.py .

from yt.mods import * # set up our namespace
import matplotlib.colorbar as cb

fn = "RedshiftOutput0005" # parameter file to load
orient = ’horizontal’

pf = load(fn) # load data

There’s a lot in here:
From this we get a containing figure, a list-of-lists of axes into which we
can place plots, and some axes that we’ll put colorbars.
We feed it:
Number of plots on the x-axis, number of plots on the y-axis, and how we
want our colorbars oriented. (This governs where they will go, too.
bw is the base-width in inches, but 4 is about right for most cases.
fig, axes, colorbars = raven.get_multi_plot(2, 3, colorbar=orient, bw = 4)

72 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/multi_plot_3x2.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/multi_plot_3x2.py

yt Documentation, Release 1.5-beta

We’ll use a plot collection, just for convenience’s sake
pc = PlotCollection(pf, center=[0.5, 0.5, 0.5])

Now we follow the method of "multi_plot.py" but we’re going to iterate
over the columns, which will become axes of slicing.
for ax in range(3):

p = pc.add_slice("Density", ax, figure = fig, axes = axes[ax][0],
use_colorbar=False)

p.set_cmap("bds_highcontrast") # this is our colormap
p.set_zlim(5e-32, 1e-29)
We do this again, but this time we take the 1-index column.
p = pc.add_slice("Temperature", ax, figure=fig, axes=axes[ax][1],

use_colorbar=False)
p.set_zlim(1e3, 3e4) # Set this so it’s the same for all.
p.set_cmap("hot") # a different colormap

pc.set_width(5.0, ’mpc’) # change width of both plots

Each ’p’ is a plot -- this is the Density plot and the Temperature plot.
Each ’cax’ is a colorbar-container, into which we’ll put a colorbar.
zip means, give these two me together. Note that it cuts off after the
shortest iterator is exhausted, in this case pc.plots.
for p, cax in zip(pc.plots, colorbars):

Now we make a colorbar, using the ’image’ attribute of the plot.
’image’ is usually not accessed; we’re making a special exception here,
though. ’image’ will tell the colorbar what the limits of the data are.
cbar = cb.Colorbar(cax, p.image, orientation=orient)
Now, we have to do a tiny bit of magic -- we tell the plot what its
colorbar is, and then we tell the plot to set the label of that colorbar.
p.colorbar = cbar
p._autoset_label()

And now we’re done! Note that we’re calling a method of the figure, not the
PlotCollection.
fig.savefig("%s_3x2" % pf)

5.20. Multi plot 3x2 73

yt Documentation, Release 1.5-beta

74 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

Sample Output

5.21 Time series phase

This is a recipe to sit inside a directory and plot a phase diagram for every one of the outputs in that directory.

5.21. Time series phase 75

yt Documentation, Release 1.5-beta

If run with mpirun and the –parallel flag, this will take advantage of multiple processors.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/time_series_phase.py .

from yt.mods import * # set up our namespace

this means get all the parameter files that it can autodetect and then supply
them as parameter file objects to the loop.
for pf in all_pfs(max_depth=2):

We create a plot collection to hold our plot
If we don’t specify the center, it will look for one -- but we don’t
really care where it’s centered for this plot.
pc = PlotCollection(pf, center=[0.5, 0.5, 0.5])

Now we add a phase plot of a sphere with radius 1.0 in code units.
If your domain is not 0..1, then this may not cover it completely.
p = pc.add_phase_sphere(1.0, ’1’, ["Density", "Temperature", "CellMassMsun"],

weight=None, lazy_reader=True,
x_bins=128, x_bounds = (1e-32, 1e-24),
y_bins=128, y_bounds = (1e2, 1e7))

We’ve over-specified things -- but this will help ensure we have constant
bounds. lazy_reader gives it the go-ahead to run in parallel, and we
have asked for 128 bins from 1e-32 .. 1e-24 in Density-space and 128 bins
between 1e2 and 1e7 in Temperature space. This will lead to very fine
points of much lower mass, which is okay. You can reduce the number of
bins to get more mass in each bin. Additionally, weight=None means that
no averaging is done -- it just gets summed up, so the value of each bin
will be all the mass residing within that bin.

Nowe let’s add a title with some fun information. p is the plot we were
handed previously. We will add the name of the parameter file and the
current redshift.
p.modify["title"]("%s (z = %0.2f)" % (pf, pf["CosmologyCurrentRedshift"]))

Now let’s save it out.
pc.save()#"%s" % pf)

76 Chapter 5. Cookbook

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/time_series_phase.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/time_series_phase.py

yt Documentation, Release 1.5-beta

Sample Output

5.22 Time series quantity

This is a recipe to sit inside a directory and calculate a quantity for all of the outputs in that directory.

If run with mpirun and the –parallel flag, this will take advantage of multiple processors.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/time_series_quantity.py .

from yt.mods import * # set up our namespace

First set up our times and quantities lists
times = []
values = []

this means get all the parameter files that it can autodetect and then supply
them as parameter file objects to the loop.
for pf in all_pfs(max_depth=2):

Get the current time, convert to years from code units
times.append(pf["InitialTime"] * pf["years"])

5.22. Time series quantity 77

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/time_series_quantity.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/time_series_quantity.py

yt Documentation, Release 1.5-beta

Now get a box containing the entire dataset
data = pf.h.all_data()
Now we calculate the average. The first argument is the quantity to
average, the second is the weight.
"lazy_reader" has two meanings -- the first is that it will try to
operate on each individual grid, rather than a flattened array of all the
data. The second is that it will also distribute grids across multiple
processors, if multiple processors are in use.
val = data.quantities["WeightedAverageQuantity"](

"Temperature", "CellVolume", lazy_reader=True)
values.append(val)

Now we have our values and our time. We can plot this in pylab!

import pylab
pylab.semilogy(times, values, ’-x’)
pylab.xlabel(r"$Time [years]$")
pylab.ylabel(r"$\mathrm{H}^{+}\/\/\mathrm{Fraction}$")
pylab.savefig("average_HII_fraction.png")

78 Chapter 5. Cookbook

yt Documentation, Release 1.5-beta

Sample Output

5.23 Extract fixed resolution data

This is a recipe to show how to open a dataset and extract it to a file at a fixed resolution with no interpolation or
smoothing. Additionally, this recipe shows how to insert a dataset into an external HDF5 file using h5py.

The latest version of this recipe can be downloaded here: http://hg.enzotools.org/cookbook/raw-
file/tip/recipes/extract_fixed_resolution_data.py .

from yt.mods import *

For this example we will use h5py to write to our output file.
import h5py

fn = "RedshiftOutput0005" # parameter file to load
pf = load(fn) # load data

This is the resolution we will extract at
DIMS = 128

Now, we construct an object that describes the data region and structure we
want
cube = pf.h.covering_grid(2, # The level we are willing to extract to; higher

5.23. Extract fixed resolution data 79

http://hg.enzotools.org/cookbook/raw-file/tip/recipes/extract_fixed_resolution_data.py
http://hg.enzotools.org/cookbook/raw-file/tip/recipes/extract_fixed_resolution_data.py

yt Documentation, Release 1.5-beta

levels than this will not contribute to the data!
Now we set our spatial extent...
left_edge=[0.0, 0.0, 0.0],
right_edge=[1.0, 1.0, 1.0],
How many dimensions along each axis
dims=[DIMS,DIMS,DIMS],
And any fields to preload (this is optional!)
fields=["Density"])

Now we open our output file using h5py
Note that we open with ’w’ which will overwrite existing files!
f = h5py.File("my_data.h5", "w")

We create a dataset at the root note, calling it density...
f.create_dataset("/density", data=cube["Density"])

We close our file
f.close()

80 Chapter 5. Cookbook

CHAPTER

SIX

ADVANCED YT USAGE

yt has been designed to be flexible, with several entry points.

6.1 Derived Quantities

Derived quantities are a way of operating on a collection of cells and returning a set of values that is fewer in number
than the number of cells – for instance yt already knows about several.

6.1.1 Using Derived Quantities

Every 3D data object (see Using and Manipulating Objects and Fields and Object Methodology) provides a mechanism
for access to derived quantities. These can be accessed via the quantities interface, like so:

pf = load("my_data")
dd = pf.h.all_data()
dd.quantities["AngularMomentumVector"]()

The following quantities are available via the quantities interface.

AngularMomentumVector():()
(This is a proxy for yt.lagos._AngularMomentumVector().) This function returns the mass-weighted
average angular momentum vector.

BaryonSpinParameter():()
(This is a proxy for yt.lagos._BaryonSpinParameter().) This function returns the spin parameter
for the baryons, but it uses the particles in calculating enclosed mass.

BulkVelocity():()
(This is a proxy for yt.lagos._BulkVelocity().) This function returns the mass-weighted average
velocity in the object.

CenterOfMass():()
(This is a proxy for yt.lagos._CenterOfMass().) This function takes no arguments and returns the
location of the center of mass of the non-particle data in the object.

Extrema(fields):()
(This is a proxy for yt.lagos._Extrema().) This function returns the extrema of a set of fields :param
fields: A field name, or a list of field names

IsBound(truncate=True, include_thermal_energy=False):()
(This is a proxy for yt.lagos._IsBound().) This returns whether or not the object is gravitationally
bound. :param truncate: Should the calculation stop once the ratio of gravitational:kinetic is 1.0? :param

81

yt Documentation, Release 1.5-beta

include_thermal_energy: Should we add the energy from ThermalEnergy on to the kinetic energy to calculate
binding energy?

MaxLocation(field):()
(This is a proxy for yt.lagos._MaxLocation().) This function returns the location of the maximum of a
set of fields.

ParticleSpinParameter():()
(This is a proxy for yt.lagos._ParticleSpinParameter().) This function returns the spin parameter
for the baryons, but it uses the particles in calculating enclosed mass.

TotalMass():()
(This is a proxy for yt.lagos._TotalMass().) This function takes no arguments and returns the sum of
cell masses and particle masses in the object.

TotalQuantity(fields):()
(This is a proxy for yt.lagos._TotalQuantity().) This function sums up a given field over the entire
region. :param fields: The fields to sum up

WeightedAverageQuantity(field, weight):()
(This is a proxy for yt.lagos._WeightedAverageQuantity().) This function returns an averaged
quantity. :param field: The field to average :param weight: The field to weight by

6.1.2 Creating Derived Quantities

The basic idea is that you need to be able to operate both on a set of data, and a set of sets of data. (If this is not
possible, the quantity needs to be added with the force_unlazy option.)

Two functions are necessary. One will operate on arrays of data, either fed from each grid individually or fed from the
entire data object at once. The second one takes the results of the first, either as lists of arrays or as single arrays, and
returns the final values. For an example, we look at the TotalMass function:

def _TotalMass(data):
baryon_mass = data["CellMassMsun"].sum()
particle_mass = data["ParticleMassMsun"].sum()
return baryon_mass, particle_mass

def _combTotalMass(data, baryon_mass, particle_mass):
return baryon_mass.sum() + particle_mass.sum()

add_quantity("TotalMass", function=_TotalMass,
combine_function=_combTotalMass, n_ret = 2)

Once the two functions have been defined, we then call add_quantity() to tell it the function that defines the data,
the collator function, and the number of values that get passed between them. In this case we return both the particle
and the baryon mass, so we have two total values passed from the main function into the collator.

6.2 Plot Modification Mechanisms

Because the plots in yt are considered to be “volatile” – existing independent of the canvas on which they are plotted
– before they are saved, you can have a set of “callbacks” run that modify them before saving to disk. By adding a
callback, you are telling the plot that whatever it does it itself, your callback gets the last word.

These can all be accessed through a registry attached to every plot object. When you add a plot to a
yt.raven.PlotCollection, you get back that affiliated plot object. By accessing modify on that plot ob-
ject, you have access to the available callbacks. For instance,

82 Chapter 6. Advanced yt Usage

yt Documentation, Release 1.5-beta

p = PlotCollection.add_slice("Density", 0)
p.modify["velocity"]()

would add the velocity() callback to the plot object. When you save the plot, the list of callbacks will be iterated
over, and the velocity callback will be handed the current state of the plot. It will then be able to dynamically modify
the plot before saving – in this case, adding on velocity vectors atop the image.

6.2.1 Available Callbacks

These are the callbacks available through the modify[] mechanism. The underlying functions are documented
(largely identical to this) in yt.raven.FixedResolution Pixelization Interface.

arrow(self, pos, code_size, plot_args=None):()
(This is a proxy for yt.raven.Callbacks.ArrowCallback.) This adds an arrow pointing at pos with
size code_size in code units. plot_args is a dict fed to matplotlib with arrow properties.

clumps(self, clumps, plot_args=None):()
(This is a proxy for yt.raven.Callbacks.ClumpContourCallback.) Take a list of clumps and plot
them as a set of contours.

contour(self, field, ncont=5, factor=4, take_log=False, clim=None, plot_args=None):()
(This is a proxy for yt.raven.Callbacks.ContourCallback.) Add contours in field to the plot.
ncont governs the number of contours generated, factor governs the number of points used in the interpola-
tion, take_log governs how it is contoured and clim gives the (upper, lower) limits for contouring.

coord_axes(self, unit=None, coords=False):()
(This is a proxy for yt.raven.Callbacks.CoordAxesCallback.) Creates x and y axes for a VMPlot.
In the future, it will attempt to guess the proper units to use.

quiver(self, field_x, field_y, factor):()
(This is a proxy for yt.raven.Callbacks.CuttingQuiverCallback.) Get a quiver plot on top of a
cutting plane, using field_x and field_y, skipping every factor datapoint in the discretization.

grids(self, alpha=1.0, min_pix=1):()
(This is a proxy for yt.raven.Callbacks.GridBoundaryCallback.) Adds grid boundaries to a plot,
optionally with alpha-blending. Cuttoff for display is at min_pix wide.

hop_circles(self, hop_output, max_number=None, annotate=False, min_size=20, max_size=10000000, font_size=8, print_halo_size=False, print_halo_mass=False, width=None):()
(This is a proxy for yt.raven.Callbacks.HopCircleCallback.) Accepts a yt.lagos.HopList
hop_output and plots up to max_number (None for unlimited) halos as circles.

hop_particles(self, hop_output, p_size=1.0, max_number=None, min_size=20, alpha=0.20000000000000001):()
(This is a proxy for yt.raven.Callbacks.HopParticleCallback.) Adds particle positions for the
members of each halo as identified by HOP. Along axis up to max_number groups in hop_output that are larger
than min_size are plotted with p_size pixels per particle; alpha determines the opacity of each particle.

axis_label(self, label):()
(This is a proxy for yt.raven.Callbacks.LabelCallback.) This adds a label to the plot.

line(self, x, y, plot_args=None):()
(This is a proxy for yt.raven.Callbacks.LinePlotCallback.) Over plot x and y with plot_args fed
into the plot.

marker(self, pos, marker=’x’, plot_args=None):()
(This is a proxy for yt.raven.Callbacks.MarkerAnnotateCallback.) Adds text marker at pos in
code-arguments. plot_args is a dict that will be forwarded to the plot command.

6.2. Plot Modification Mechanisms 83

yt Documentation, Release 1.5-beta

nparticles(self, width, p_size=1.0, col=’k’, stride=1.0, ptype=None):()
(This is a proxy for yt.raven.Callbacks.NewParticleCallback.) Adds particle positions, based
on a thick slab along axis with a width along the line of sight. p_size controls the number of pixels per particle,
and col governs the color. ptype will restrict plotted particles to only those that are of a given type.

particles(self, axis, width, p_size=1.0, col=’k’, stride=1.0):()
(This is a proxy for yt.raven.Callbacks.ParticleCallback.) Adds particle positions, based on a
thick slab along axis with a width along the line of sight. p_size controls the number of pixels per particle, and
col governs the color.

point(self, pos, text, text_args=None):()
(This is a proxy for yt.raven.Callbacks.PointAnnotateCallback.) This adds text at position pos,
where pos is in code-space. text_args is a dict fed to the text placement code.

quiver(self, field_x, field_y, factor):()
(This is a proxy for yt.raven.Callbacks.QuiverCallback.) Adds a ‘quiver’ plot to any plot, using
the field_x and field_y from the associated data, skipping every factor datapoints.

sphere(self, center, radius, circle_args=None, text=None, text_args=None):()
(This is a proxy for yt.raven.Callbacks.SphereCallback.) A sphere centered at center in code units
with radius radius in code units will be created, with optional circle_args, text, and text_args.

text(self, pos, text, text_args=None):()
(This is a proxy for yt.raven.Callbacks.TextLabelCallback.) Accepts a position in (0..1, 0..1) of
the image, some text and optionally some text arguments.

title(self, title=’Plot’):()
(This is a proxy for yt.raven.Callbacks.TitleCallback.) Accepts a title and adds it to the plot

units(self, unit=’au’, factor=4, text_annotate=True, text_which=-2):()
(This is a proxy for yt.raven.Callbacks.UnitBoundaryCallback.) Add on a plot indicating where
factor*s of *unit are shown. Optionally text_annotate on the text_which-indexed box on display.

velocity(self, factor=16):()
(This is a proxy for yt.raven.Callbacks.VelocityCallback.) Adds a ‘quiver’ plot of velocity to
the plot, skipping all but every factor datapoint

6.3 The Plugin File

The plugin file is a means of modifying the available fields, quantities, data objects and so on without modifying the
source code of yt.

The following configuration parameters need to be set in the ~/.yt/config file in order to enable the usage of a
plugin file:

[lagos]

loadfieldplugins: True
pluginfilename: my_plugins.py

You can call your plugin file whatever you like, and after the imports inside the lagos module are completed, it is
executed in that namespace.

The code in this file can thus add fields, add derived quantities, add datatypes, and on and on. For example, if I created
a plugin file containing:

84 Chapter 6. Advanced yt Usage

yt Documentation, Release 1.5-beta

def _myfunc(field, data):
return na.random.random(data["Density"].shape)

add_field("SomeQuantity", function=_myfunc)

then all of my data objects would have access to the field “SomeQuantity” despite its lack of use.

6.4 Creating 3D Datatypes

The three-dimensional datatypes in yt follow a fairly simple protocol. The basic principle is that if you want to define
a region in space, that region must be identifable from some sort of cut applied against the cells – typically, in yt, this
is done by examining the geomery. (The yt.lagos.ExtractedRegionBase type is a notable exception to this,
as it is defined as a subset of an existing data object.)

In principle, you can define any number of 3D data objects, as long as the following methods are implemented to
protocol specifications.

__init__(self, args, kwargs)
This function can accept any number of arguments but must eventually call AMR3DData.__init__. It is used to
set up the various parameters that define the object.

_get_list_of_grids(self)
This function must set the property _grids to be a list of the grids that should be considered to be a part of the
data object. Each of these will be partly or completely contained within the object.

_is_fully_enclosed(self, grid)
This function returns true if the entire grid is part of the data object and false if it is only partly enclosed.

_get_cut_mask(self, grid)
This function returns a boolean mask in the shape of the grid. All of the cells set to ‘True’ will be included in
the data object and all of those set to ‘False’ will be excluded. Typically this is done via some logical operation.

For a good example of how to do this, see the yt.lagos.AMRCylinderBase source code.

6.5 Debugging and Driving YT

There are several different convenience functions that allow you to control YT in perhaps unexpected and unorthodox
manners. These will allow you to conduct in-depth debugging of processes that may be running in parallel on multiple
processors, as well as providing a mechanism of signalling to YT that you need more information about a running
process. Additionally, YT has a built-in mechanism for optional reporting of errors to a central server. All of these
allow for more rapid development and debugging of any problems you might encounter.

Additionally, yt is able to leverage existing developments in the IPython community for parallel, interactive analysis.
This allows you to initialize multiple YT processes through mpirun and interact with all of them from a single,
unified interactive prompt. This enables and facilitates parallel analysis without sacrificing interactivity and flexibility.

6.5.1 The Pastebin

At http://paste.enzotools.org/ a pastebin is available for placing scripts. With yt the script yt_lodgeit.py is
distributed, which allows for commandline uploading and downloading of pasted snippets. To upload script you
would supply it to the command:

$ yt_lodgeit.py some_script.py

6.4. Creating 3D Datatypes 85

http://paste.enzotools.org/

yt Documentation, Release 1.5-beta

The URL will be returned. If you’d like it to be marked ‘private’ and not show up in the list of pasted snippets, supply
the argument --private. All snippets are given either numbers or hashes. To download a pasted snippet, you would
use the --download option:

$ yt_lodgeit.py --download=216

The snippet will be output to the window, so output redirection can be used to store it in a file.

Error Reporting with the Pastebin

If you are having troubles with yt, you can have it paste the error report to the pastebin by running your problematic
script with the --paste option:

$ python2.6 some_problematic_script.py --paste

The --paste option has to come after the name of the script. When the script dies and prints its error, it will also
submit that error to the pastebin and return a URL for the error. When reporting your bug, include this URL and then
the problem can be debugged more easily.

For more information on asking for help, see asking-for-help.

6.5.2 Signaling YT to Do Something

During startup, yt inserts handlers for two operating system-level signals. These provide two diagnostic methods for
interacting with a running process. Signalling the python process that is running your script with these signals will
induce the requested behavior.

SIGUSR1 This will cause the python code to print a stack trace, showing exactly where in the function
stack it is currently executing.

SIGUSR2 This will cause the python code to throw a RuntimeError. If you are running with the --rpdb
options (see Remote and Disconnected Debugging) this will also cause the interpreter to sit inside a
debug loop. If you are running inside pdb (see pdb) then pdb will produce a debug loop.

If your yt-running process has PID 5829, you can signal it to print a traceback with:

$ kill -SIGUSR1 5829

Note, however, that if the code is currently inside a C function, the signal will not be handled, and the stacktrace will
not be printed, until it returns from that function.

6.5.3 Remote and Disconnected Debugging

If you are running a parallel job that fails, often it can be difficult to do a post-mortem analysis to determine what went
wrong. To facilitate this, yt has implemented an XML-RPC interface to the Python debugger (pdb) event loop.

Running with the --rpdb command will cause any uncaught exception during execution to spawn this interface,
which will sit and wait for commands, exposing the full Python debugger. Additionally, a frontend to this is provided
through the yt command. So if you run the command:

$ mpirun -np 4 python2.6 some_script.py --parallel --rpdb

and it reaches an error or an exception, it will launch the debugger. Additionally, instructions will be printed for
connecting to the debugger. Each of the four processes will be accessible via:

86 Chapter 6. Advanced yt Usage

http://docs.python.org/library/pdb.html#module-pdb
http://en.wikipedia.org/wiki/XML-RPC

yt Documentation, Release 1.5-beta

$ yt rpdb 0

where 0 here indicates the process 0.

For security reasons, this will only work on local processes; to connect on a cluster, you will have to execute the
command yt rpdb on the node on which that process was launched.

6.5.4 Interactive Parallel Processing with IPython

IPython is a powerful mechanism not only for interactive usage, but also for task delegation and parallel analysis
driving. Using the IPython Parallel Multi Engine interface, you can launch multiple ‘engines’ for computation which
can then be driven by yt. However, to do so, you will have to ensure that the IPython dependencies for parallel
computation are met – this requires the installation of a few components.

• PyOpenSSL

• Twisted

• Foolscap

Both Twisted and Foolscap can be installed using easy_install but PyOpenSSL requires manual installation. Of
course, yt itself requires mpi4py to be installed as well, which is described in Parallel Computation With YT .

The entire section in the IPython manual on parallel computation is essential reading, but for a quick start, you need
to launch the engines:

$ ipcontroller
$ mpirun -np 4 ipengine

This will launch the controller, which interfaces with the new computation engines launched afterward. Note that you
can launch an arbitrary number of compute processes. Now, launch IPYthon:

$ ipython

and execute the commands:

ipcontroller mpirun -np 4 ipengine
mec = client.MultiEngineClient()
mec.activate()

You have now obtained an object, mec, which is able to interact with and control all of the launched engines. Any
command prefixed with the string %px will now be issued on all processors. Any action that would be executed in
parallel in yt will be executed in parallel here. For instance,

%px from yt.mods import *
%px pf = load("data0050")
%px pc = PlotCollection(pf)
%px pc.add_projection("Density", 0)

This will load up the name space, the parameter file, and project through data0050 in parallel utilizing all of our
processors. IPython can also execute commands on a limited subset of hosts, and it can also turn on auto-execution,
to send all of your commands to all of the compute engines, using the %autopx directive.

6.5. Debugging and Driving YT 87

http://ipython.scipy.org/doc/manual/html/parallel/parallel_multiengine.html
http://pyopenssl.sourceforge.net/
http://twistedmatrix.com/trac/
http://foolscap.lothar.com/trac
http://code.google.com/p/mpi4py/
http://ipython.scipy.org/doc/manual/html/parallel/index.html

yt Documentation, Release 1.5-beta

88 Chapter 6. Advanced yt Usage

CHAPTER

SEVEN

EXTENSIONS

Extensions take yt fundamentals and run with them. For certain analysis needs, these tools make life a lot easier.

7.1 Halo Finding

Section author: Stephen Skory <sskory@physics.ucsd.edu>

There are two methods of finding particle haloes in yt. The recommended and default method is called HOP, a method
described in Eisenstein and Hut (1998). A basic friends-of-friends (e.g. Efstathiou et al. (1985)) halo finder is also
implemented, however at this time it should be considered experimental.

7.1.1 HOP

The version of HOP used in yt is an upgraded version of the publicly available HOP code. Support for 64-bit floats
and integers has been added, as well as parallel analysis through spatial decomposition. HOP builds groups in this
fashion:

1. Estimates the local density at each particle using a smoothing kernel.

2. Builds chains of linked particles by ‘hopping’ from one particle to its densest neighbor. A particle which is its
own densest neighbor is the end of the chain.

3. All chains that share the same densest particle are grouped together.

4. Groups are included, linked together, or discarded depending on the user-supplied over density threshold pa-
rameter. The default is 160.0.

Please see the HOP method paper for full details.

7.1.2 Friends-of-Friends

The version of FoF in yt is based on the publicly available FoF code from the University of Washington. Like HOP,
FoF supports parallel analysis through spatial decomposition. FoF is much simpler than HOP:

1. From the total number of particles, and the volume of the region, the average inter-particle spacing is calculated.

2. Pairs of particles closer together than some fraction of the average inter-particle spacing (the default is 0.2) are
linked together. Particles can be paired with more than one other particle.

3. The final groups are formed the networks of particles linked together by friends, hence the name.

89

mailto:sskory@physics.ucsd.edu
http://adsabs.harvard.edu/abs/1998ApJ...498..137E
http://adsabs.harvard.edu/abs/1985ApJS...57..241E
http://cmb.as.arizona.edu/~eisenste/hop/hop.html
http://adsabs.harvard.edu/abs/1998ApJ...498..137E
http://www-hpcc.astro.washington.edu/tools/fof.html

yt Documentation, Release 1.5-beta

Warning: The FoF halo finder in yt is not thoroughly tested! It is probably fine to use, but you are strongly
encouraged to check your results against the data for errors.

7.1.3 Running HaloFinder

Running HOP on a dataset is straightforward

from yt.mods import *
pf = load("data0001")
halo_list = HaloFinder(pf)
:language: python

Running FoF is similar:

from yt.mods import *
pf = load("data0001")
halo_list = FOFHaloFinder(pf)

7.1.4 Halo Data Access

halo_list is a list of Halo class objects ordered by decreasing halo size. A Halo object has convenient ways to
access halo data. This loop will print the location of the center of mass for each halo found

for halo in halo_list:
print halo.center_of_mass()

All the methods are:

• .center_of_mass() - the center of mass for the halo.

• .maximum_density() - the maximum density in “HOP” units.

• .maximum_density_location() - the location of the maximum density particle in the HOP halo.

• .total_mass() - the mass of the halo in Msol (not Msol/h).

• .bulk_velocity() - the velocity of the center of mass of the halo in simulation units.

• .maximum_radius() - the distance from the center of mass to the most distant particle in the halo in simulation
units.

• .get_size() - the number of particles in the halo.

• .get_sphere() - returns an an EnzoSphere object using the center of mass and maximum radius.

Note: For FOF the maximum density value is meaningless and is set to -1 by default. For FOF the maximum density
location will be identical to the center of mass location.

The command

halo_list.write_out("HaloAnalysis.out")

will output the results of HOP or FoF to a text file named HaloAnalysis.out. The file contains each of the data
values listed above except for .get_sphere().

For each halo the data for the particles in the halo can be accessed like this

90 Chapter 7. Extensions

yt Documentation, Release 1.5-beta

for halo in halo_list:
print halo["particle_index"]
print halo["particle_position_x"] # in simulation units

7.1.5 Parallel Halo Analysis

Both the HOP and FoF halo finders can run in parallel using spatial decomposition. In order to run them in parallel it
is helpful to understand how it works.

Below in the first plot (i) is a simplified depiction of three haloes labeled 1,2 and 3:

Halo 3 is twice reflected around the periodic boundary conditions.

In (ii), the volume has been sub-divided into four equal subregions, A,B,C and D, shown with dotted lines. Notice that
halo 2 is now in two different subregions, C and D, and that halo 3 is now in three, A, B and D. If the halo finder is run
on these four separate subregions, halo 1 is be identified as a single halo, but haloes 2 and 3 are split up into multiple
haloes, which is incorrect. The solution is to give each subregion padding to oversample into neighboring regions.

In (iii), subregion C has oversampled into the other three regions, with the periodic boundary conditions taken into
account, shown by dot-dashed lines. The other subregions oversample in a similar way.

The halo finder is then run on each padded subregion independently and simultaneously. By oversampling like this,
haloes 2 and 3 will both be enclosed fully in at least one subregion and identified completely.

Haloes identified with centers of mass inside the padded part of a subregion are thrown out, eliminating the problem
of halo duplication. The centers for the three haloes are shown with stars. Halo 1 will belong to subregion A, 2 to C
and 3 to B.

Parallel HaloFinder padding

To run with parallel halo finding, there is a slight modification to the script

from yt.mods import *
pf = load("data0001")
halo_list = HaloFinder(pf,padding=0.02)
--or--
halo_list = FOFHaloFinder(pf,padding=0.02)

The padding parameter is in simulation units and defaults to 0.02. This parameter is how much padding is added to
each of the six sides of a subregion. This value should be 2x-3x larger than the largest expected halo in the simulation.

7.1. Halo Finding 91

yt Documentation, Release 1.5-beta

It is unlikely, of course, that the largest object in the simulation will be on a subregion boundary, but there is no way
of knowing before the halo finder is run.

In general, a little bit of padding goes a long way, and too much just slows down the analysis and doesn’t improve the
answer (but doesn’t change it). It may be worth your time to run the parallel halo finder at a few paddings to find the
right amount, especially if you’re analyzing many similar datasets.

7.2 HaloProfiler

Section author: Britton Smith <britton.smith@colorado.edu>

The HaloProfiler provides a means of performing analysis on multiple points in a dataset at once. This is primarily
intended for use with cosmological simulations, in which gravitationally bound structures composed of dark matter
and gas, called halos, form and become the hosts for galaxies and galaxy clusters.

The HaloProfiler performs two primary functions: radial profiles and projections. With only a few exceptions discussed
below, all of the HaloProfiler’s machinery can be run in parallel, with mpi4py installed, by running your script inside
an mpirun call with the –parallel flag at the end.

7.2.1 Configuring the HaloProfiler

A sample script to run the HaloProfiler can be found in examples/run_halo_profiler.py. In order to run the
HaloProfiler on a dataset, a HaloProfiler object must be instantiated with the path to the dataset as the only argument:

import yt.extensions.HaloProfiler as HP
hp = HP.HaloProfiler("DD0242/DD0242")

Most of the HaloProfiler’s options are configured with keyword arguments given at instantiation. These options are:

• halos (str): “multiple” for profiling more than one halo. In this mode halos are read in from a list or identified
with a halo finder. In “single” mode, the one and only halo center is identified automatically as the location of
the peak in the density field. Default: “multiple”.

• halo_list_file (str): name of file containing the list of halos. The HaloProfiler will look for this file in the data
directory. Default: “HopAnalysis.out”.

• halo_list_format (str or dict): the format of the halo list file. “yt_hop” for the format given by yt’s halo finders.
“enzo_hop” for the format written by enzo_hop. This keyword can also be given in the form of a dictionary
specifying the column in which various properties can be found. For example, {“id”: 0, “center”: [1, 2, 3],
“mass”: 4, “radius”: 5}. Default: “yt_hop”.

• halo_finder_function (function): If halos is set to multiple and the file given by halo_list_file does not exit, the
halo finding function specified here will be called. Default: HaloFinder (yt_hop).

• halo_finder_args (tuple): args given with call to halo finder function. Default: None.

• halo_finder_kwargs (dict): kwargs given with call to halo finder function. Default: None.

• use_density_center (bool): re-center halos before performing profiles with an center of mass weighted by
overdensity. This is generally not needed. Default: False.

• density_center_exponent (flt): when use_density_center set to True, this specifies the exponent, alpha, such
that the halo center calculation is weighted by overdensity^alpha. Default: 1.0.

• use_field_max_center (str): another alternative for halo re-centering by selecting the location of the maximum
of the field given by this keyword. This is generally not needed. Default: None.

92 Chapter 7. Extensions

mailto:britton.smith@colorado.edu
http://code.google.com/p/mpi4py/

yt Documentation, Release 1.5-beta

• halo_radius (flt): if no halo radii are provided in the halo list file, this parameter is used to specify the radius
out to which radial profiles will be made. This keyword is also used when halos is set to single. Default: 0.1.

• radius_units (str): the units of halo_radius. Default: “1” (code units).

• n_profile_bins (int): the number of bins in the radial profiles. Default: 50.

• profile_output_dir (str): the subdirectory, inside the data directory, in which radial profile output files will be
created. The directory will be created if it does not exist. Default: “radial_profiles”.

• projection_output_dir (str): the subdirectory, inside the data directory, in which projection output files will be
created. The directory will be created if it does not exist. Default: “projections”.

• projection_width (flt): the width of halo projections. Default: 8.0.

• projection_width_units (str): the units of projection_width. Default: “mpc”.

• project_at_level (int or “max”): the maximum refinement level to be included in projections. Default: “max”
(maximum level within the dataset).

• velocity_center (list): the method in which the halo bulk velocity is calculated (used for calculation of radial
and tangential velocities. Valid options are:

– [”bulk”, “halo”] (Default): the velocity provided in the halo list

– [”bulk”, “sphere”]: the bulk velocity of the sphere centered on the halo center.

– [”max”, field]: the velocity of the cell that is the location of the maximum of the field specified (used only
when halos set to single).

• filter_quantities (list): quantities from the original halo list file to be written out in the filtered list file. Default:
[’id’,’center’].

Warning: The HaloProfiler runs in parallel in a round-robin style, evenly distributing the list of halos among all
processors. Hence, the HaloProfiler will not work in parallel when halos is set to single.

7.2.2 Profiles

Once the HaloProfiler object has been instantiated, fields can be added for profiling with the add_profile()
method:

hp.add_profile(’CellVolume’, weight_field=None, accumulation=True)
hp.add_profile(’TotalMassMsun’, weight_field=None, accumulation=True)
hp.add_profile(’Density’, weight_field=None, accumulation=False)
hp.add_profile(’Temperature’, weight_field=’CellMassMsun’, accumulation=False)
hp.make_profiles()

The make_profiles() method will begin the profiling.

7.2. HaloProfiler 93

yt Documentation, Release 1.5-beta

Radial profiles of Overdensity (left) and Temperature (right) for five halos.

7.2.3 Projections

The process of making projections is similar to that of profiles:

hp.add_projection(’Density’, weight_field=None)
hp.add_projection(’Temperature’, weight_field=’Density’)
hp.add_projection(’Metallicity’, weight_field=’Density’)
hp.make_projections(axes=[0, 1, 2], save_cube=True, save_images=True, halo_list="filtered")

If save_cube is set to True, the projection data will be written to a set of hdf5 files in the directory given by projec-
tion_output_dir. The keyword, halo_list, can be used to select between the full list of halos (“all”), the filtered list
(“filtered”), or an entirely new list given in the form of a file name. See Filter Functions for a discussion of filtering
halos.

94 Chapter 7. Extensions

yt Documentation, Release 1.5-beta

Projections of Density (top) and Temperature, weighted by Density (bottom), in the x (left), y (middle), and z (right)
directions for a single halo with a width of 8 Mpc.

7.2.4 Halo Filters

Filters can be added to create a refined list of halos based on their profiles or to avoid profiling halos altogether based
on information given in the halo list file.

Filter Functions

It is often the case that one is looking to identify halos with a specific set of properties. This can be accomplished
through the creation of filter functions. A filter function can take as many args and kwargs as you like, as long as the
first argument is a profile object, or at least a dictionary which contains the profile arrays for each field. Filter functions
must return a list of two things. The first is a True or False indicating whether the halo passed the filter. The second
is a dictionary containing quantities calculated for that halo that will be written to a file if the halo passes the filter. A
sample filter function based on virial quantities can be found in yt/extensions/HaloFilters.py.

Halo filtering takes place during the call to make_profiles(). The add_halo_filter() method is used to
add a filter to be used during the profiling:

hp.add_halo_filter(HP.VirialFilter, must_be_virialized=True,
overdensity_field=’ActualOverdensity’,
virial_overdensity=200,
virial_filters=[[’TotalMassMsun’,’>=’,’1e14’]],
virial_quantities=[’TotalMassMsun’,’RadiusMpc’])

The addition above will calculate and return virial quantities, mass and radius, for an overdensity of 200. In order to
pass the filter, at least one point in the profile must be above the specified overdensity and the virial mass must be at
least 1e14 solar masses. If the VirialFilter function has been added to the filter list, the HaloProfiler will make sure

7.2. HaloProfiler 95

yt Documentation, Release 1.5-beta

that the fields necessary for calculating virial quantities are added. As many filters as desired can be added. If filters
have been added, the next call to make_profiles() will filter by all of the added filter functions:

hp.make_profiles(filename="FilteredQuantities.out")

If the filename keyword is set, a file will be written with all of the filtered halos and the quantities returned by the filter
functions.

Note: If the profiles have already been run, the HaloProfiler will read in the previously created output files instead
of re-running the profiles. The HaloProfiler will check to make sure the output file contains all of the requested halo
fields. If not, the profile will be made again from scratch.

Pre-filters

A single dataset can contain thousands or tens of thousands of halos. Significant time can be saved by not profiling
halos that are certain to not pass any filter functions in place. Simple filters based on quantities provided in the initial
halo list can be used to filter out unwanted halos using the prefilters keyword:

hp.make_profiles(filename="FilteredQuantities.out",
prefilters=["halo[’mass’] > 1e13"])

Arguments provided with the prefilters keyword should be given as a list of strings. Each string in the list will be
evaluated with an eval.

Note: If a VirialFilter function has been added with a filter based on mass (as in the example above), a prefilter will
be automatically added to filter out halos with masses greater or less than (depending on the conditional of the filter)
a factor of ten of the specified virial mass.

7.3 Analyzing an Entire Simulation

Section author: Britton Smith <britton.smith@colorado.edu>

The EnzoSimulation class provides a simple framework for performing the same analysis on multiple datasets in a
single simulation. At its most basic, an EnzoSimulation object gives you access to a time-ordered list of datasets over
the time or redshift interval of your choosing. It also includes more sophisticated machinery for stitching together
cosmological datasets to create a continuous volume spanning a given redshift interval. This is the engine that powers
the light cone generator (see light-gone-generator).

7.3.1 EnzoSimulation Options

The only argument required to instantiate an EnzoSimulation is the path to the parameter file used to run the simulation:

import yt.extensions.EnzoSimulation as ES
es = ES.EnzoSimulation("my_simulation.par")

The EnzoSimulation object will then read through the simulation parameter file to figure out what datasets are available
and where they are located. Comment characters are respected, so commented-out lines will be ignored. If no time
and/or redshift interval is specified using the keyword arguments listed below, the EnzoSimulation object will create a
time-ordered list of all datasets.

Note: For cosmological simulations, the interval of interest can be specified with a combination of time and redshift
keywords.

The additional keyword options are:

96 Chapter 7. Extensions

mailto:britton.smith@colorado.edu

yt Documentation, Release 1.5-beta

• initial_time (float): the initial time in code units for the dataset list. Default: None.

• final_time (float): the final time in code units for the dataset list. Default: None.

• initial_redshift (float): the initial (highest) redshift for the dataset list. Only for cosmological simulations.
Default: None.

• final_redshift (float): the final (lowest) redshift for the dataset list. Only for cosmological simulations. Default:
None.

• links (bool): if True, each entry in the dataset list will contain entries, previous and next, that point to the
previous and next entries on the dataset list. Default: False.

• enzo_parameters (dict): a dictionary specify additional parameters to be retrieved from the parameter file. The
format should be the name of the parameter as the key and the variable type as the value. For example, {‘Cosmol-
ogyComovingBoxSize’:float}. All parameter values will be stored in the dictionary attribute, enzoParameters.
Default: None.

• get_time_outputs (bool): if False, the time datasets, specified in Enzo with the dtDataDump, will not be added
to the dataset list. Default: True.

• get_redshift_outputs (bool): if False, the redshift datasets will not be added to the dataset list. Default: True.

Warning: The EnzoSimulation object will use the GlobalDir Enzo parameter to determine the absolute path
to the data, so make sure this is set correctly if the data has been moved. If this parameter is not present in the
parameter file, the code will look for the data in the current directory.

7.3.2 The Dataset List

The primary attribute of an EnzoSimulation object is the dataset list, allOutputs. Each list item is a dictionary, con-
taining the time, redshift (if cosmological), and filename of the dataset.

>>> es.allOutputs[0]
{’filename’: ’/Users/britton/EnzoRuns/cool_core_unreasonable/RD0000/RD0000’,
’time’: 0.81631644849936602, ’redshift’: 99.0}

Now, analyzing each dataset is easy:

for output in es.allOutputs:
load up a dataset
pf = load(output[’filename’])
do something!

7.3.3 Cosmology Splices

For cosmological simulations, the physical width of the simulation box corresponds to some ∆z, which varies with
redshift. Using this logic, one can stitch together a series of datasets to create a continuous volume or length element
from one redshift to another. The _create_cosmology_splice method will return such a list:

cosmo = es._create_cosmology_splice(
minimal=True, deltaz_min=0.0, initial_redshift=1.0, final_redshift=0.0)

The returned list is of the same format as the allOutputs attribute. The keyword arguments are:

• minimal (bool): if True, the minimum number of datasets is used to connect the initial and final redshift. If
false, the list will contain as many entries as possible within the redshift interval.

7.3. Analyzing an Entire Simulation 97

yt Documentation, Release 1.5-beta

• deltaz_min (float): specifies the minimum ∆z between consecutive datasets in the returned list.

• initial_redshift (float): the initial (highest) redshift in the cosmology splice list. If none given, the highest
redshift dataset present will be used.

• final_redshift (float): the final (lowest) redshift in the cosmology splice list. If none given, the lowest redshift
dataset present will be used.

The most well known application of this function is the light cone generator.

7.3.4 Running the HaloProfiler on all Datasets

The following recipe will run the HaloProfiler (see HaloProfiler) on all the datasets in one simulation between z = 10
and 0. (cookbook_simulation_halo_profiler.py)

1 import yt.extensions.EnzoSimulation as ES
2 import yt.extensions.HaloProfiler as HP
3

4 es = ES.EnzoSimulation("simulation_parameter_file", initial_redshift=10, final_redshift=0)
5

6 # Loop over all dataset in the requested time interval.
7 for output in es.allOutputs:
8

9 # Instantiate HaloProfiler for this dataset.
10 hp = HP.HaloProfiler(output[’filename’])
11

12 # Add a virialization filter.
13 hp.add_halo_filter(HP.VirialFilter,must_be_virialized=True,
14 overdensity_field=’ActualOverdensity’,
15 virial_overdensity=200,
16 virial_filters=[[’TotalMassMsun’,’>=’,’1e14’]],
17 virial_quantities=[’TotalMassMsun’,’RadiusMpc’])
18

19 # Add profile fields.
20 hp.add_profile(’CellVolume’,weight_field=None,accumulation=True)
21 hp.add_profile(’TotalMassMsun’,weight_field=None,accumulation=True)
22 hp.add_profile(’Density’,weight_field=None,accumulation=False)
23 hp.add_profile(’Temperature’,weight_field=’CellMassMsun’,accumulation=False)
24 # Make profiles and output filtered halo list to FilteredQuantities.out.
25 hp.make_profiles(filename="FilteredQuantities.out")
26

27 # Add projection fields.
28 hp.add_projection(’Density’,weight_field=None)
29 hp.add_projection(’Temperature’,weight_field=’Density’)
30 hp.add_projection(’Metallicity’,weight_field=’Density’)
31 # Make projections for all three axes using the filtered halo list and
32 # save data to hdf5 files.
33 hp.make_projections(save_cube=True,save_images=True,
34 halo_list=’filtered’,axes=[0,1,2])
35

36 del hp

98 Chapter 7. Extensions

CHAPTER

EIGHT

CONTRIBUTING CODE

yt is designed to be accessible to contributions, of both enhancements to the core packages and the library of recipes
and scripts for performing common – and not-so-common – tasks.

8.1 Bug Fixes

If you have simple bug fixes, please feel free to attach them to a ticket on the bug tracker (you might have to register
first) or to email them to one of the developers directly. We’re always happy to hear about the things we’ve done
wrong, and how you’ve fixed them!

8.2 Licensing

All contributed code must be GPL-compatible; we ask that you consider licensing under the GPL version 3, but we
will consider submissions of code that are BSD-like licensed as well. If you’d rather not license in this manner, but
still want to contribute, just drop me a line and I’ll put a link on the main wiki page to wherever you like!

8.3 Fields and Extensions

yt comes with a bunch of derived fields. However, if you have constructed some that add interesting analysis quanti-
ties, please feel free to send them to one of the developers!

Additionally, if you have a sub-module that extends yt in a fun or exciting way, we’d be very happy to include it.
Recently we’ve added light cone generators, halo profilers, and work is even ongoing on a parallel halo finder!

8.4 Analysis Code and Examples

Because yt can be a bit difficult to become fully acquainted with, we encourage you to share your analysis scripts.
Specifically, we will provide you with free repository space to store any analysis scripts that went into the writing
of a paper. Through this, we hope to build up a library not only of usage-cases, but of real-world examples of plot
generation and data analysis.

If you are interested in submitting your scripts, please contact Matt Turk at matthewturk@gmail.com.

99

http://yt.enzotools.org/newticket/
http://yt.enzotools.org/register

yt Documentation, Release 1.5-beta

100 Chapter 8. Contributing Code

CHAPTER

NINE

ASKING FOR HELP

If you run into problems with yt, you should feel encouraged to ask for help – whether this comes in the form of
reporting a bug or emailing the mailing list. If something doesn’t work for you, it’s in everyone’s best interests to
make sure that it gets fixed.

9.1 The Mailing List

The mailing list should be your first stop, every time and always. If you are having a problem, it might be something
other people have struggled with and fixed on their own, or it might be a bug – in which case it has to be brought to
the attention of the developers!

There are two mailing lists, yt-users and yt-dev. The first should be used for asking for help, suggesting features and
so on, and the latter has more chatter about the way the code is developed and discussions of changes and feature
improvements.

If you email yt-users asking for help, there are several things you must provide, or else we won’t be able to do
much:

1. What it is that went wrong, and how you knew it went wrong.

2. A traceback if appropriate – but see Error Reporting with the Pastebin for some help with that.

3. If possible, the smallest number of steps that can reproduce the problem.

4. Which version of the code you are using.

When you email the list, providing this information can help the developers understand what you did, how it went
wrong, and any potential fixes or similar problems they have seen in the past. Without this context, it can be very
difficult to help out!

9.2 Installation Issues

If you are having installation issues, and you’ve read the Installation section of the manual, you should definitely
email the yt-users email list. You should provide information about the host, the version of the code you are using,
and the output of yt_install.log from your installation. We are very interested in making sure that yt installs
everywhere!

101

http://lists.spacepope.org/listinfo.cgi/yt-users-spacepope.org
http://lists.spacepope.org/listinfo.cgi/yt-dev-spacepope.org

yt Documentation, Release 1.5-beta

9.3 Vanilla Usage Issues

If you’re running yt without having made any modifications to the code base, please provide as much of your script as
you are able to. Submitting both the script and the traceback to the pastebin (as described in The Pastebin) is usually
sufficient to reproduce the error.

9.4 Customization and Scripting Issues

If you have customized yt in some way, or created your own plugins file (as described in The Plugin File) then it may
be necessary to supply both your patches to the source and the plugin file, if you are utilizing something defined in
that file.

9.5 How To Report A Bug

The first step, when reporting a bug, is to identify the smallest piece of code that reproduces the bug.

To submit a bug report, register an account on the yt Trac site and submit a new ticket. Alternatively, email the
yt-users mailing list and we will construct a new ticket in your stead.

102 Chapter 9. Asking for Help

http://yt.enzotools.org/wiki/
http://yt.enzotools.org/newticket

CHAPTER

TEN

FAQ

10.1 Why Python?

Well, the easiest answer is that I knew it, and it met the requirements. The more interesting answer, though, is a
combination of things. Python right now has a lot of momentum behind it, particularly in the scientific community.
It’s easy to compile, portable across many architectures, relatively simple to write C-based exntesions for, and it’s well-
suited to rapid application development. With access to an interpreter, new avenues of data-exploration are opened,
and this can lead to much more rapid and interesting analysis.

10.2 Where can I learn more about Python?

There are several good, free books about Python available on the web. The best place to start is with the official tutorial,
but there’s also Dive Into Python, an entire collection of videos on ShowMeDo.com, and a much more specific guide
to using NumPy, which is the backend on which all the math done in yt is based.

As far as books go, the only book I’ve found to be absolutely indispensible is the Beazley Book.

10.3 Who works on yt?

Matthew Turk is the lead developer, but Britton Smith, Jeff Oishi, Dave Collins and Stephen Skory have all made
substantive contributions.

10.4 What’s up with the names?

In the book Snow Crash, yt is Uncle Enzo’s messenger. Lagos is the keeper of the data, Raven is a master slicer, and
so on. In version 2.0, many of these names will be eliminated when the code base is reorganized.

10.5 Are there any restrictions on my use of yt?

yt has been released under Version 3 of the GNU General Public License.

If you found it useful, and have extended it in some meaningful way, of course I’d love to see your contributions so
they can be shared with the community. Additionally, if you use yt in a paper, I’d love it if you’d drop me a line to let
me know.

103

http://docs.python.org/tut/
http://www.diveintopython.org/
http://showmedo.com/videos/python?topic=beginner_programming
http://showmedo.com/
http://www.scipy.org/Tentative_NumPy_Tutorial
http://www.amazon.com/exec/obidos/ASIN/0735710910
http://en.wikipedia.org/wiki/Snow_Crash
http://www.gnu.org/licenses/gpl.html

yt Documentation, Release 1.5-beta

10.6 How do I know what the units returned are?

This is a very important question. The derived fields – and the native data types – are returned as CGS units, to the
best knowledge of the code; but if you see something that looks way off, you should investigate. To see, specifically,
what yt is returning for a given field, you can do:

print lagos.fieldInfo[some_field].units

and it will show you the units that have been assigned to it.

If you are defining your own derived field, you should assume that the units given to the function you define are already
in CGS.

That being said, if for some reason yt is unable to determine the correct units for your simulation, it will notify you. It
knows how to parse output from all of the versions of Enzo I have used or encountered, and the newest public release
is a target platform. However, the Enzo and Orion codebases are so diverse and – at times – fragmented that it is
difficult if not impossible to know that all the corner cases have been identified and handled.

10.7 What are all these .yt files?

By default, yt attempts to serialize a couple pieces of data that help speed it up in future invocations. Specifically,
the entire contents of the hierarchy, the parent-child relationships between the grids, and any projections of the entire
volume that are made. Furthermore, objects that have been saved to the hierarchy are stored here as well.

10.8 How can I help?

If you find a bug, report it. If you do something cool, write it up. If you find a place to improve the code, send in a
patch. We’re very interested in contributions! There is a set of hacking guidelines on the wiki.

10.9 Something has gone wrong. What do I do?

Well, first off, double check that you’re giving the code what it needs, and not asking it for something it can’t provide.
Use the help() command on an object or a method to get more information.

If you can’t figure out what’s up, please go ahead and copy the resultant traceback information (the error message it
prints out) along with any log files, and either send an email to the yt-users mailing list (subscribe first!) or attach
them to a ticket at http://yt.enzotools.org/. If you are running from within a script, re-run the script with --paste on
the command line; this will upload the error message to the pastebin and print a URL. Include the URL in your email
message to the mailing list.

10.10 How do I specify an axis?

For now, axes are specified by integers – 0,1,2 for x,y,z. In version 2.0 this will probably change to allow for string-
identification as well.

104 Chapter 10. FAQ

http://yt.enzotools.org/wiki/HackingGuidelines
http://yt.enzotools.org/
http://paste.enzotools.org

yt Documentation, Release 1.5-beta

10.11 Where can I go for support?

I’ve set up a yt-users mailing list. There’s more information about it at the yt homepage and in the section Asking
for Help.

10.11. Where can I go for support? 105

http://yt.enzotools.org

yt Documentation, Release 1.5-beta

106 Chapter 10. FAQ

CHAPTER

ELEVEN

YT METHODS

Warning: This is a subsection of the chapter in Matthew Turk’s thesis on the development and capabilities of
yt. Some of the specifics may be out of date, but the mathematical and algorithmic descriptions are still valid.

11.1 Introduction

The construction and development of analysis tools acts as a rite of passage for computational astrophysics students.
As scientists, the goal is always the same: understanding and examining output of a simulation and then processing
it to produce some insight about natural phenomena. However, non-intuitive output formats and the relatively time-
consuming process of constructing and testing modules to process these outputs delays the process of generating
useful analysis methods and tools. Furthermore, this leads to non-standard analysis tools, which may conceal both
bugs and creeping errors. Clearly, a flexible and freely-distributed means of analyzing and exploring data would serve
to enhance the scientific process, easing the transition from generating data to understanding data.

Adaptive mesh refinement, in particular, usually consists of relatively intuitive but not straightforward data formats.
The Enzo code, described in this work, relies on regular, cartesian grid patches consisting of computational elements,
and has been used to study a wide variety of astrophysical problems. A competing code called Orion, also built on
adaptive mesh refinement technology, is also used to study astrophysical problems, albeit utilizing different underlying
solvers and physical models. Both start from the presupposition that at all locations in a given computational domain,
all quantities governing physical processes are defined by a set of fields. These data fields act in conjunction to
completely describe the state of the simulation.

Several sets of tools exist to handle adaptive mesh refinement data; in the astrophysical community alone, there are
several to choose from. Jacques, written in IDL by Tom Abel (http://jacques.enzotools.org), acts as a visualization
system for Enzo data. VisIt, developed at Lawrence Livermore National Lab, is a 3D visualization suite that can
examine both Enzo and Orion data. Volume renderers, such as that presented in [vg06-kaehler], allow for interactive
and immersive rendering of adaptive mesh refinement. Additionally, numerous home-grown scripts and modules,
developed in isolation, have been designed over the lifetimes of these codes to handle analysis and visualization.
However, what was missing was a flexible, lightweight solution built exclusively on freely available open source
components. This would allow not only for largely unfettered redistribution, but also a complete examination of every
component of the analysis process, from data to plot.

I present here an analysis toolkit I have created called yt, which is built exclusively on free and open source compo-
nents and is unencumbered by heavyweight libraries and licensing servers. I have designed it to be highly modular,
with a clear data analysis module distinct from the visualization and plotting modules, and a graphical user interface
that builds on rather than supplanting the underlying application programming interface.

yt is written primarily in Python, with some computationally expensive routines written in C for speed. Python is an
open source, freely-available object-oriented language designed for rapid development and ease of use. Python use
is increasingly widespread, both inside and outside the scientific domain, for purposes as diverse as serving dynamic

107

http://jacques.enzotools.org

yt Documentation, Release 1.5-beta

content online to symbolic math processing. Here we use it to provide transparently parallel analysis and visualization
of adaptive mesh refinement simulations of astrophysical phenomena, a task to which it is ideally suited. Additionally,
this allows the creation and usage of new analysis modules by users, which can be built on the foundations of the yt
framework.

The definition of Free Software requires a number of freedoms: the freedom to use, the freedom to inspect, the
freedom to give away, and the freedom to modify. These principles serve science well, and all of them serve to
improve repeatability and non-locality of results. Not only are all of the components of yt Free Software, but the
libraries it is built upon are Free Software. Enzo, as well, is Free Software and runs on exclusively Free Software
operating systems. In this way, the development of yt helps to ensure the entire pipeline of analysis – from the
simulation to the paper – is open and available to all parties.

11.2 Analysis Requirements

Astrophysical systems are inherently multi-scale, and the formation of primordial stars is a good example. Beginning
with cosmological-scale perturbations in the background density of the universe, one must follow the evolution of gas
parcels down to the mass scale of the moon to have any hope of resolving the inner structure and thus constrain the mass
scale of these stars. The Enzo code, used in this work to simulate the formation of the first stars in the universe, is also
used for simulating large-scale galaxy clusters [2007ApJ-671-27H], and galaxy formation and evolution [2009ApJ-
696-96W]. These diverse applications require flexible analysis methods that work for broad but shallow refinement
regions – as in a turbulence simulation – as well as narrow and deep refinement, as in a primordial star formation
simulation.

Approaching from the standpoint of examining slices and projected regions in extremely deep adaptive mesh refine-
ment datasets, yt was created to approach the problem of off-screen rendering and scriptable interfaces. To accomo-
date the relatively diverse computing environments on which Enzo is run, exclusively interactive visualization had to
be replaced with a detached method more suited to remote visualization, ofttimes through a job execution queue on a
computing cluster. By detaching the user interface from the analysis backend, the architecture was restructred to be a
loosely federated system of components. Currently, yt is primarily a scripting interface for analysis and visualization,
with limited data management capabilities. However, a full graphical user interface for interactive exploration, built
on wxPython, remains a crucial part of the toolkit as a whole. These components all interact as modules, and thus can
operate completely independently of each other.

Utilizing commodity Python-based packages, yt is a fully-featured, adaptable and versatile means of analyzing large-
scale astrophysical data. It is based primarily on the library NumPy and it is mostly written in Python. It uses
Matplotlib for visualization, and optionally PyTables and wxPython for various sub-tasks. Additionally, several core
routines have been written in C for fast numerical computation, and a simple TVTK-based 3D visualization component
has been implemented. A community of users and developers has grown around the project; it has been used in several
published papers and is now distributed with the Enzo code itself.

The ultimate purpose of yt is to provide a high-level interface to data, which will have the side effect of enabling
different entry points to yt itself. This interface includes the creation of publication-quality plots, as well as a con-
cealment of difficult, multi-step operations. This allows the creation of multiple frontends, as well as recipe-based
approaches to analysis script creation. To provide maximum flexibility, as well as a conceptual separation of the dif-
ferent components and tasks to which components can be directed, yt is packaged into several sub-packages, for data
handling, data analysis, and plotting.

11.3 Community Engagement

From its beginning, yt has been exclusively free and open source software, and it will never require components that
are not open source and freely available. This eliminates dependencies on licensing servers, as well as contributing
back to the community any developed technology. The development has been driven, and will continue to be driven,
by the pragmatic analysis needs of working scientists.

108 Chapter 11. yt Methods

yt Documentation, Release 1.5-beta

Furthermore, no implemented features will be hidden from the community at large. This philosophy has served the
toolkit well already; the analysis toolkit has been examined by outsiders and minor bugs have been found and corrected.
While this provision does not extend to components provided by others, it has served well for the development team,
as all new features and components are developed in the open with peer review.

The development of yt takes place in a publicly accessible subversion repository with a Trac frontend. Cross-
referenced and indexed documentation is available, and automatically updated as changes are made. The source code
is entirely commented and extensive programming interface documentation is automatically generated. In order to
ease the process of installation, a script is included to install the entire set of dependencies along with the toolkit; fur-
thermore, installations of the toolkit are maintained at several different supercomputing centers, and a binary version
for Mac OS X is provided.

This high-level of community involvement and, more importantly, outreach enables a broader set of diverse needs
and desires to guide the long-term development. Enabling direct technology transfer between users, rather than re-
quiring re-implementation, allows the the community to disentangle the coding process from the scientific process;
simultaneously, by making all code public, inspectable and freely available, it can be openly improved and verified.
The availability and relatively approachable nature of yt, in addition to the inclusion of many simple analysis tasks,
reduces the barrier to entry for young scientists; furthermore, by orienting the analysis framework development as a
community project, the learning curve for transforming simulation data into publications is greatly reduced.

11.4 Data Analysis Layer

The analysis layer, lagos, provides several features beyond data access, including extensive analytical capabilities.
At its simplest level, lagos is used to access the parameters and data in a given data snapshot output from an AMR
simulation. Objects are described by physical shapes and orientations, rather than the data structures dictated by the
code. This enables an intuitive and physically meaningful entry point to data analysis, rather than a pragmatic approach
based on the underlying simulation code base.

11.4.1 Physical Objects and Data Selection

One of the difficulties in dealing with rectilinear adaptive mesh refinement data is the fundamental disconnect between
the geometries of the grid structure and the objects described by the simulation. One does not expect galaxies to form
and be shaped as rectangular prisms; as such, access to physically-meaningful structures must be provided. Therefore,
yt provides

• Spheres

• Rectangular prisms

• Cylinders (disks)

• Arbitrary regions based on logical operations

• Topologically-connected sets of cells

• Axis-orthogonal and arbitrary-angle rays

• Axis-orthogonal and arbitrary-angle slices

• Arbitrary fixed-resolution grids

• Projected planes

Each of these regional descriptors is presented to the user as a single object, and when accessed the data is returned at
the finest resolution available; all overlapping coarse grid cells are removed transparently. This was first implemented
as physical structures resembling spheres were to be analyzed, followed by disk-like structures, each of which needed

11.4. Data Analysis Layer 109

yt Documentation, Release 1.5-beta

to be characterized and studied as a whole. By making available these intuitive and geometrically meaningful data
selections, the underlying physical structures that they trace become more accessible to analysis and study.

By overloading the normal Python dictionary-like accessor methods, the objects mediate access to data fields defined
at every cell. The simple command

>>> some_object["Density"]

initiates a procedure that begins by examining the current contents of the datastore of object some_object, proceeds
to read the Density field from the disk from those grids from which it is culled, concatenates the individual fields
into a single array, and then returns that to the user.

The abstraction layer is such that there are several means of interacting with these three-dimensional objects, each of
which is conceptually unified, and which respects a given set of data protocols. Due to the flexibility of Python, as
well as the versatility of NumPy, this functionality has been easily exposed in the form of multiple returned arrays of
data, which are fast and easily manipulated. Below can be seen the calculation of the angular momentum vector of a
sphere, and then the usage of that vector to construct a disk with a height relative to the radius.

sp = amr_hierarchy.sphere(center, radius)
print sp["Density"].min()
L_vec = sp.quantities["AngularMomentumVector"]()
my_disk = amr_hierarchy.disk(center, L_vec,

radius, radius/100.0)
print my_disk["Density"].min()

These objects handle cell-based data fields natively, but are also able to appropriately select and return particles con-
tained within them. This has facilitated the inclusion of an off-the-shelf halo finder (discussed below) which allows
users to quantify the clustering of particles within a region.

11.4.2 Object Storage

The construction of objects, as well as derived data fields, can often be a computationally expensive task; in particular,
clumps found by the contouring algorithm (see Contour Finding) and the gravitational binding checks that are used to
describe them require a relatively time-consuming set of steps. To save time and enable repeatable analysis, the storage
of objects between sessions is essential. Python itself comes with an object serialization protocol called pickle that
can handle most objects. However, by default the pickle protocol is greedy – it seeks to take all affiliated data. For
a given yt object, this may include the entire hierarchy, the parameter file, all arrays associated with that object, and
even user-space variables. Under the assumption that the data used to generate the fields within a given object will be
available the next time the object is accessed, we can reduce the size and scope of the pickling process by designing a
means of storing and retrieving these objects across sessions.

Implementing the __reduce__ method on an object allows the description of a pickling protocol. For all yt objects,
this protocol has been specified as a description in physical space of the object itself; this usually constitutes replicating
the arguments to the constructor – the radius and center of a sphere, for instance. For extracted objects based on
endices of parent objects, the indices are stored as well. Once the protocol has been executed, binary data designed to
reconstruct the object is stored – either in a single, standalone file or in the parameter file-affiliated data store, ending
in the extension yt.

The biggest obstacle to retrieving an object is the affiliation of an object with a given parameter file. At their most
base level, a parameter file can be described by a path. However, while this works for a single instantiation of a yt
session, often between sessions data will be moved – between supercomputing centers, or across mounted external
hard drives, or even within a given computing center to a different storage system. A means of addressing, or at least
uniquely identifying, parameter files is necessary to ensure uniform access across instances of an analysis session. An
absolute path, while unique, is not necessarily invariant. To this end, the basename (the final element in the absolute
path), the simulation time, and the creation time of the simulation output (CurrentTimeIdentifier in Enzo) are
used to identify a given static output. An MD5 hash is generated of these three items, which is then used as a key for

110 Chapter 11. yt Methods

http://docs.python.org/library/pickle.html#module-pickle

yt Documentation, Release 1.5-beta

the parameter file. By this means, collisions between different parameter files (rather than copies of a single parameter
file) are made extremely unlikely.

Upon retrieval of the object, the key is handed to a parameter file storage object. This object keeps track of all
instantiated parameter files; whenever a new parameter file object is instantiated, its hash is generated and compared
against the set of existing parameter files. If a match is found, the current path is compared to the path being used
during instantiation, and the path in the data store is updated as necessary. If the parameter file is new to the system, it
is inserted. By this means, the locations of all known parameter files are kept as up to date as possible; this is by no
means a foolproof system, but it works in most cases.

11.4.3 Grid Patches

The Enzo and Orion codes are based around “patch-based” refinement. For every set of cells flagged to be refined, a
minimally-enclosing box is selected for refinement. This grid patch is then used as a container and as a computational
element, and cell data output to disk is grouped into the parent grid patches. In addition to field and particle data, each
possesses a set of attributes that describe its position, its relationship to other grids, and its cell spacing:

• Parent(s)

• Unique identifier

• Level number

• Left edge

• Right edge

• Dimensions

• Children

The cell spacing is easily computed as dxi,j,k = (LEi,j,k − REi,j,k)/Di,j,k where i, j, k are the axes, LE is the left
edge, RE is the right edge and D is the number of cells along that axis. The regions covered by grid patches are
not uniquely covered; higher-level child grids overlap with cells in their parent grid, and often that data needs to be
removed to ensure that only the highest resolution data is used for analysis purposes. For this purpose, yt provides an
affiliated child_mask for every grid; this is a boolean array with identical dimensionality, but wherever a child grid
covers a cell, that cell’s index in the mask is set to zero. Everywhere the grid contains the finest data available, the
mask cells are set to one. This caching of the locations of child cells enables rapid selection of cells where the data is
already the most refined available.

11.4.4 Data Fields

The model for handling data, and processing fundamental data fields into new fields describing derived quantities,
is designed to be built on top of an object model. Presupposing the existence of object sphere, we can access the
field Density by accessing it in a dictionary like fashion. On top of this, we can build automatically recursive
field generators that depend on other fields. All fields, including derived fields, are allowed to be defined by either
a component of a data file, or a function that transforms one or more other fields, thus allowing multiple layers of
definition to exist, and allowing the user to extend the existing field set as needed.

By defining simple functions that automatically operate via array operations, generating derived fields is straightfor-
ward and fast. For instance, a field such as the magnitude of the velocity in a cell

V =
√
v2

x + v2
y + v2

z

can be defined independently of the source of the data:

11.4. Data Analysis Layer 111

yt Documentation, Release 1.5-beta

def VelocityMagnitude(field, data):
return (data["x-velocity"]**2.0 +

data["y-velocity"]**2.0 +
data["z-velocity"]**2.0)**0.5

Each operation acts independently on each element of the source data fields; this preserves the abstraction of fields as
undifferentiated sets of cells, when in fact those cells could be distributed spatially over the entire dataset, with varying
cell widths and varying grid levels.

Once a function is defined, it is added to a global field container that contains not only the fields, but a set of metadata
about each field – the unit specifier, the unit specifier for projected versions of that field, and any implicit or explicit
requirements for that field. Field definitions can require that certain parameters be provided (such as a height vector,
a center point, a bulk velocity and so on) or, most powerfully, that the data object has some given characteristic. This
is typically applied to ensure that data is given in a spatial context; for finite difference solutions, such as calculating
the gradient or divergence of a set of fields, yt allows the derived field to mandate that the input data provided in a
three-dimensional structure. Furthermore, when specifying that some data object be provided in three dimensions, a
number of buffer cells can be specified as well; the returned data structure will then have those buffer cells taken from
neighboring grids. This enables higher-order methods to be used in the generation of fields, for instance when a given
finite difference stencil extends beyond the computational domain of a single grid patch.

11.4.5 Two-Dimensional Data Representations

In order to make images and plots, yt has several different classes of two-dimensional data representations, all of
which can be turned into images. Each of these objects generates a list of variable-resolution points, which are then
passed into a C-based pixelization routine that transforms them into a fixed-resolution buffer, defined by a width, a
height, and physical boundaries of the source data.

Slices

The simplest means of examining data is through the usage of grid-axis aligned slices through the dataset. This has
several benefits - it is easy to calculate which grids and which cells are required to be read off disk (and most data
formats allow for easy striding of data off disk, which reduces this operation’s IO overhead) and the process of stepping
through a given dataset is relatively easy to automate.

To construct a set of data points representing a slice, all grids intersected by the slice are first examined, and then the
index of the cell desired is generated

floor(p− vi)/dx

where p is the position of the slice, vi is the coordinate of the left-edge of the grid along the axis of the slice and dx
is the cell spacing of the grid along the axis of the slice. By this process we construct a set of data points defined
as (xp, dxp, yp, dyp, v) where p indicates that this is in the image plane rather than in the global coordiantes of the
simulation, and v is the value of the field selected; furthermore, every returned (xp, dxp, yp, dyp, v) point does not
overlap with any points where dx < dxp or dy < dyp; thus each point is the finest resolution available.

To construct an image buffer, these cells are pixelized and placed into a fixed-resolution array, defined by
(xp,min, xp,max, yp,min, yp,max). Every pixel in the image plane is iterated over, and any cells that overlap with it
are deposited into every pixel Iij as:

α = Ac/Ap

αv → Iij

where α is an attempt to anti-alias the output image plane, to account for misalignment in the image and world
coordinate systems and Ac and Ap are the areas of the cell and pixel respectively. Anti-aliasing can be disabled, as
well.

112 Chapter 11. yt Methods

yt Documentation, Release 1.5-beta

Projections

The nature of adaptive mesh refinement is such that one often wishes to examine either the sum of values along a
given sight-line or a weighted-average along a given sight-line. yt provides an algorithm for generating line integrals
in an adaptive fashion, such that every returned (xp, dxp, yp, dyp, v) point does not contain data from any points where
dx < dxp or dy < dyp; the alternative being a binned histogram, where fixed-width cells are defined perpendicular
to the line of sight and then data is filled into those cells. By providing this list of finest-resolution data points in
a projected domain, images of any width can be constructed essentially instantaneously; conversely, however, the
projection process takes longer, for reasons described below.

To obtain the finest points available, the grids are iterated over in order of the level of refinement – first the coarsest
and then proceeding to the finest levels of refinement. The process of projecting a grid is slightly variant, dependent
on the desired output from the projection. For weighted averages,

Vij =
∑

n vijnwijndl
Wij =

∑
n wijndl

where Vij is the output value at every cell in the image plane, vijn is every cell in the grid’s data field, wijn is the
weight field at every cell in the grid’s data field, and dl is the path length through a single cell. Note that because this
process is conducted on a grid-by-grid basis, and the dl does not change within a given grid, this term can be moved
outside of the sum. In the limit of an unweighted integration, Wij is set to 1.0, rather than to the evaluation of the
sum. Furthermore, a mask of child cells is reduced with a logical and operation along the axis of projection; any cell
where this mask is “False” has data of a higher refinement level available to it. This grid is then compared against all
grids on the same level of refinement with which it overlaps; the flattened x and y position arrays are compared via
integer indexing and any collisions are combined. This process is repeated with data from coarser grids that has been
identified as having subsequent data available to it; each coarse cell is then added to the r2 cells on the current level
of processing, where r is the refinement factor. At this point, all cells in the array of data for the current level where
the reduced child mask is “True” are removed from subsequent processing, as they are part of the final output of the
projection. All cells where the child mask is “False” are retained to be processed on the next level. In this manner, we
create a cascading refinement process, where only two levels of refinement have to be compared at a given time.

When the entire data hierarchy has been processed, the final flattened arrays of Vp and Wp are divided to construct the
output data value

v(x, y) = V (x, y)/W (x, y)

which is kept as the weighted average value along the axis of projection. In the case of direct integration, note that
W (x, y) is in fact unity, so this is a pass-through operation. Once this process is completed, the projection object
respects the same data protocol, and can be plotted in the same way, as an ordinary slice.

Cutting Planes

At some length scales in star formation problems, gas is likely to collapse into a disk, which is often not aligned
with the axes of the simulation. By slicing along the axes, patterns such as spiral density waves could be missed, and
ultimately go unexamined. In order to better visualize off-axis phenomena, yt is able to create images misaligned
with the axes.

A cutting plane is an arbitrarily-aligned plane that transforms the intersected points into a new coordinate system such
that they can be pixelized and made into a publication-quality plot. Identifying the data that is transformed into the
image, at some arbitrary angle to the disk, is a two-step process.

A central point and a single normal vector are required; this normal vector is taken as normal to the desired image
plane. This leaves a degree of freedom for rotation of the image plane about the normal vector and through the central
point. A minimization procedure is conducted to determine the appropriate “North” vector in the image plane:

px = a0 × n
py = n × px

d = −c · n

11.4. Data Analysis Layer 113

yt Documentation, Release 1.5-beta

where a0 is the axis with which the normal vector (mathbf{n}) has the greatest cross product, c is the vector to the
center point of the plane, and d is the inclination vector. From this we construct two matrices, the rotation matrix:

R =

 pxi pxj pxk

pyi pyj pyk

ni nj nk



and its inverse, which are used to rotate coordiantes into and out of the image plane, respectively. Grids are identified
as being intersected by the cutting plane through fast array operations on their boundaries. We define a new array, D,
where

Dij = vji·d

where the index i is over each grid and the index j refers to which of the eight grid vertices (mathbf{v}) of the grid is
being examined. Grids are accepted if all three components of every Dj is of identical sign:

all(Dj < 0)or all(Dj > 0).

Upon identification of the grids that are intersected by the cutting plane, we select data points by examining the
distance of the cell-center to the plane, and selecting points where

||p·n + d|| <
√
dx2 + dy2 + dz2

2
.

This generates a small number of false positives (from regarding a cell as a sphere rather than a rectangular prism),
which are removed during the pixelization step when creating a plot. Each data point is then rotated into the image
plane via the rotation matrix:

p·px → xp

p·py → yp.

This technique requires a new pixelization routine, in order to ensure that the correct cells are taken and placed on the
plot, which requires an additional set of checks to determine if the cell intersected with the image plane. The process
here is similar to the standard pixelization procedure, described above, with the addition of the rotation step. Defining
d =

√
dx2 + dy2 + dz2, every data point where (xp ± d, yp ± d) is within the bounds of the image is examined by

the pixelization routine for overlap of the data point with a pixel in the output buffer. Every potentially intersecting
pixel is then iterated over and the coordinates (xi, yi, 0) of the image buffer are rotated via the inverse rotation matrix
back to the world coordinates (x′, y′, z′). These are then compared against the (x, y, z) of this original datapoint. If
all three conditions

|x− x′| < dx
|y − y′| < dy
|z − z′| < dz

are satisfied, the data value from the cell is deposited in that image buffer pixel. An unfortunate side effect of the
relatively complicated pixelization procedure, as well as the strict intersection-based inclusion, is that the process of
antialising is non-trivial and computationally expensive. As such, these images often appear quite jagged at cell-pixel
boundaries. Additionally, utilizing the same transformation and pixelization process, overlaying velocity vectors is
trivially accomplished and such a process is included in the toolkit.

11.4.6 Contour Finding

Visual inspection of simulations provides a simple method of identifying distinct hydrodynamic regions; however, a
quantitative approach must be taken to describe those regions. Specifically, distinct collapsing regions can be identified
by locating topologically-connected sets of cells. The nature of adaptive mesh refinement, wherein a given set of cells
may be connected across grid and refinement boundaries, requires traversing grid and resolution boundaries.

114 Chapter 11. yt Methods

yt Documentation, Release 1.5-beta

Unfortunately, while locating connected sets inside a single-resolution grid is a straightforward but non-trivial problem
in recursive programming, extending this in an efficient way to hierarchical datasets can be problematic. To that end,
the algorithm implemented in yt checks on a grid-by-grid basis, utilizing a buffer zone of cells at the grid boundary
to communicate set identification. The algorithm for identifying these sets is a recursive and iterative process:

1. Identify grids to be considered, such as from AMRSphereBase object

2. Give unique identification numbers to all finest-level cells within the desired contour (vmin ≤ v ≤ vmax)

3. Construct expandable queue of grids to be examined

(a) Give unique identification number to all coarse-cells in considered grid within desired contour (vmin ≤
v ≤ vmax)

(b) Obtain buffer zone of one cell-width, including contour IDs

(c) Recursively examine all cells identified as contour members

i. Update contour ID to be the maximum of 26 neighboring cells

ii. If current contour ID is greater than original contour ID, repeat until it is not

iii. Notify all neighboring cells with contour ID less than current contour ID to re-examine neighbors and
update

(d) Flush contour IDs in buffer zone to originating grids

(e) If any buffer zones contour IDs have changed during this process, re-order queue such that the next grids
to be examined are originating grids of changed contour IDs

4. Reorder contour IDs such that the largest contours have the lowest numbers

5. Return extracted contour objects

Any contour that crosses into the buffer zones mandates a reconsideration of all grids that intersect with the currently
considered grid. This process is expensive, as it operates recursively, but ensures that all contours are automatically
joined.

Once contours are identified, they are split into individual derived objects that are returned to the user. This presents
an integrated interface for generating and analyzing topologically-connected sets of related cells. This method was
used in [2009ApJ-691-441S] to study fragmentation of collapsing gas clouds, specifically to examine the gravitational
boundedness of these clouds and the length and density scales at which fragmentation occurs.

To determine whether or not an object is bound, we evaluate the inequality

N∑
i=1

miv
2
i

2
<

N−1∑
i=1

N∑
j=i+1

Gmimj

r

where n is the number of cells in the identified contour. The left hand side of this equation is the total kinetic energy
in the object; if desired, the internal thermal energy (nkT / (gamma-1)) can also be added to this term. This code has
been written to run either in a hand-coded C module or on the graphics processor, using NVIDIA’s CUDA frame-
work (http://www.nvidia.com/cuda/) via the PyCUDA (http://mathema.tician.de/software/pycuda) package. Moving
the calculation onto the graphics card speeds the calculation up nearly ideally by two orders of magnitude. This allows
for binding checks on extremely large datasets in a mangeable amount of time.

11.4.7 Fixed Resolution Grids

The particular structures of multi-resolution data can impede certain classes of algorithms. To address this need, the
creation of fixed-resolution (and three-dimensional) arrays of data must be easy and accessible. However, unless the
entire region under consideration is contained within a single grid patch, it can be difficult to construct these arrays.
The method included in yt for creating these “covering grids” is to select all grids within a given rectangular prism.

11.4. Data Analysis Layer 115

http://www.nvidia.com/cuda/
http://mathema.tician.de/software/pycuda

yt Documentation, Release 1.5-beta

These grids are then iterated over, starting on the coarsest level, and used to fill in each point in the new array. Only
cells that intersect with the array are considered, and any grid cell that intersects with any cell within the covering
grid is included, as long as the child mask for that cell indicates no finer data is available. By this method, the entire
covering grid is filled in with the finest cells available to it. This can be utilized for generating ghost zones, as well as
for minimum covering grids out of many single-resolution grids that are disjoint in the domain.

However, because coarse cells are duplicated across all cells in the (possibly finer-resolution) covering grid with which
they intersect, this can lead to unwanted resolution artifacts. To combat this, a “smoothed” covering grid object is also
available. This object is filled in completely at all levels l < L where L is the level at which the covering grid is
being extracted. Once a given level has been filled in, the grid is trilinearly interpolated to the next level, and then all
new data points from grids at that level replace existing data points. This method is suitable for generating smoothed
multi-resolution grids and constructing vertex-centered data, as used in Section Immersive Visualization with VTK.

11.4.8 Multi-dimensional Profiles

Distributions of data within the space of other variables are often necessary when examining and analyzing data.
For instance, in a collapsing gas cloud, examining the average temperature with increasing radius from a central
location provides a convenient means of examining the process of collapse, as well as the effective equation of
state. To conduct this sort of analysis, typically a multi-dimensional histogram is constructed, wherein the val-
ues in every bin are weighted averages of some additional quantity. In yt, the term “profile” is used to describe
any weighted average or distribution of a variable with respect to a second, independent variable. Such uses in-
clude a histogram of temperature with respect to density, a radial profile of molecular hydrogen fraction, and a ra-
dius, temperature, and velocity phase diagram. With the usage of the open-source, 3D rendering engine S2PLOT
(http://astronomy.swin.edu.au/s2plot/index.php?title=S2PLOT), these profiles can have up to three independent vari-
ables.

One can imagine profiles serving two different purposes: to show the average value of a variable at a fixed location in
the phase space of a set of independent variables, or for the distribution of a variable with respect to a set of independent
variables. The first step is that of binning or histogramming. We define up to three axes of comparison, which will be
designated x, y, and z, but should not be confused with the spatial axes. These are discretized into x0...xn where n is
the number of bins along the specified axis. Indices j for each value among the set of points being profiled are then
generated along each axis such that

xj ≤ vi < xj+1.

These indices are then used to calculated the weighted average in each bin:

Vj =
∑N

i=1 viwi∑N
i=1 wi

where Vj is now the average value in bin j in our weighted average, and the N points are selected such that their
index along the considered axis is j. If we wish to examine multiple dimensions, we simply mandate that in all
dimensions, the index of all the points used in the average is the index of the bin into which values are being placed.
To conduct a non-averaged distribution, the weights are all set to 1.0 in the numerator, and the sum in the denominator
is not calculated. This allows, for example, the examination of mass distribution in a plane defined by chemo-thermal
quantities.

11.4.9 Parallel Analysis

As the capabilities of supercomputers grow, the size of datasets grows as well. Most standalone codes are not paral-
lelized; the process is time-consuming, complicated, and error-prone. Therefore, the disconnect between simulation
time and data analysis time has grown ever larger. In order to meet these changing needs, yt has been modified to run

116 Chapter 11. yt Methods

http://astronomy.swin.edu.au/s2plot/index.php?title=S2PLOT

yt Documentation, Release 1.5-beta

in parallel on multiple independent processing units on a single dataset. Specifically, utilizing the Message Passing In-
terface (MPI) via the MPI4Py (http://code.google.com/p/mpi4py/) module, a lightweight, NumPy-native wrapper that
enables natural access to the C-based routines for interprocess communication, the code has been able to subdivide
datasets into multiple decomposed regions that can then be analyzed independently and joined to provide a final result.
A primary goal of this process has been to preserve at all times the API, such that the user can submit an unchanged
serial script to a batch processing queue, and the toolkit will recognize it is being run in parallel and distribute tasks
appropriately.

The tasks in yt that require parallel analysis can be divided into two broad categories: those tasks that act on data in
an unordered, uncorrelated fashion (such as weighted histograms, summations, and some bulk property calculation),
and those tasks that act on a decomposed domain (such as halo finding and projection).

Unordered Analysis

To parallelize unordered analysis tasks, a set of convenience functions have been implemented utilizing an initial-
ize/finalize formalism; this abstracts the entirety of the analysis task as a transaction. Signaling the beginning and
end of the analysis transaction sets in motion several procedures, defined by the analysis task itself, that handle the
initialization of data objects and variables and that combine information across processors. These are abstracted by
the base class ParallelAnalysisInterface, which implements several different methods useful for parallel
analysis. By this means, the intrustion of parallel methods and algorithms into previously serial tasks is kept to a
minimum; invasive changes are typically not necessary.

This transaction follows several steps:

1. Call get_grids to obtain list of grids to process

2. Iterator calls object._initialize_parallel

3. Object processes each grid

4. Iterator calls object._finalize_parallel and raises StopIteration.

Inside the routine get_grids the iterator decomposes the full collection of grids into chunks based on the organi-
zation of the datasets on disk. Implementation of the parallel analysis interface mandates that objects implement two
gatekeeper functions, object._initialize_parallel and object._finalize_parallel. These two
functions are allowed to broadcast and communicate with other processors. At the end of the finalization step, the
object is expected to be identical on all processors. This enables scripts to be run identically in parallel and in serial.
For unordered analysis, this process results in close-to-ideal scaling with the number of processors.

Upon initialization, ParallelAnalysisInterface determines which sets of data will be processed by which
processors. In order to decompose a task across processors, a means of assigning grids to processors is required.
For spatially oriented-tasks (such as projections) this is simple and accomplished through the decomposition of some
spatial domain. For unordered analysis tasks, the clear means by which grids can be selected is through a minimization
of file input overhead. The process of reading a single set of grid data from disk can be outlined as:

1. Open file

2. Seek to grid data position

3. Read data

4. Close file

However, in the case of “packed” Enzo data, as well as all Orion data, multiple grids are written to a single file. If we
know the order in which these grids are written, we can consolidate several data reads into a single operation:

1. Open file

2. For each grid

(a) Seek to grid position

11.4. Data Analysis Layer 117

http://code.google.com/p/mpi4py/

yt Documentation, Release 1.5-beta

(b) Read each field

3. Close file

If we know the means by which the grids and fields are ordered on disk, we can simplify the seeking requirements
and instead read in large sweeps across the disk. By futher pre-allocating all necessary memory, this becomes a single
operation that can be accomplished in one “sweep” across each file. By allocating as many grids from a single “grid
output” file on a single processor, this procedure can be used to minimize file overhead on each processor.

Spatial Decomposition

MPI provides a means of decomposing an arbitrary region across a given number of processors. Because of the in-
herently spatial nature of the adaptive projection algorithm implemented in yt, parallelization requires decomposition
with respect to the image plane; however, future revisions of the algorithm may allow for unordered grid projection.
To project in parallel, the computational domain is divided such that the image plane is distributed equally among the
processors; each component of the image plane is then used to construct rectangular prisms along the entire line of
sight. Each processor is thus allocated a rectangular prism of dimensions

(Li, Lj , Ld)

where the axes have been rotated such that the line of sight of the projection is the third dimension, LiLj is constant
across processors, and Ld is the entire computational domain along the axis of projection. Following the projection
algorithm, each processor will then have a final image plane set of points, as per usual:

(xp, dxp, yp, dyp, v)

but subject to the constraints that all points are contained within the rectangular prism as prescribed by the image
plane decomposition. At the end of the projection step all processors join their image arrays, which are guaranteed to
contain only unique points.

Enzo and Orion utilize different file formats, but both are designed to output a single file per processor with all
constituent grids computed on that processor localized to that file. Unfortunately, both codes conduct “load balancing”
operations on the computational domain, so processors are not necessarily guaranteed to have spatially localized
grids; this results in the output format not being spatially decomposed, but rather unordered. As a result, this method
of projection does not scale as well as desired, because each processor is likely to have to read grid datasets from
many files. Despite that, the communication overhead is essentially irrelevant, because the processors only need to
communicate the end of the projection process, to share their non-overlapping final result with all other processors in
the computational group.

11.4.10 Halo Finding

In cosmological hydrodynamic simulations, dark matter particles and gas parcels are coupled through gravitational
interaction. Furthermore, dark matter dominates gravitational interaction on all but the smallest scales. Dark matter
particles act as a collisionless fluid, and are the first component of the simulation to collapse into identifiable structures;
as such, they can be used effectively to identify regions of structure formation.

The HOP algorithm [eishut98] is an effective and tested means of identifying collapsed dark matter halos in a sim-
ulation, and has been a part of the Enzo code distribution for some time. Typically an Enzo simulation is allowed
to execute to completion, an entire dataset is loaded into memory, and then the HOP algorithm processes the entire
domain. This process is memory-intensive, and requires that the entire dataset be loaded into a single computer. It
is not inherently parallel and thus does no domain decomposition. The output from this is a single list of halos and
the associated densities, masses, particle identifiers, positions, and so on. The HOP algorithm works by assigning a
density to every particle; each particle then “hops” to its most dense neighbor. Each set of particles sharing a most
dense neighbor is then called a group, and any groups with a density below the minimum density threshold (a free
parameter) is removed from the final list of groups. These groups are then rejoined along boundaries.

118 Chapter 11. yt Methods

yt Documentation, Release 1.5-beta

Including this code inside yt, as a means of abstracting away compilation and data access, was trivial; however, to do
so the input to HOP was generalized to be an arbitrary three-dimensional data source. As a result, the HOP algorithm
can now be applied on subsets of the domain. By decomposing the domain into multiple tiles with a buffer region,
the HOP algorithm can be run on multiple processors, with a final “join” operation performed to construct a full halo
list. Any halo whose most dense point is located within the buffer zone is cut, as those halos should be found on
neighboring tiles.

However, the free parameter in this calculation is that of the size of the buffer zone. A balance must be struck between
identification of objects and memory requirements; clearly, based on the means of identifying, if a halo happens to
reside within the buffer zone of a tile and it is greater in spatial extent than that of the buffer zone, it will be truncated
on both sides. This problem is mitigated by the particular set of problems where a parallel halo finder is needed.
These problems, with more particles than can fit in the main memory of a standard HPC cluster node, are likely to be
extremely large physical domain problems, with relatively small halos. In the circumstances where a large simulation
has very large halos, greater than the size of the buffer zone, this method would be unsuitable, as it would split the
identification of halos over the buffer zones. This situation could arise, for instance, in a relatively small physical
domain simulation with extremely high resolution dark matter particles, where micro-halos could be missed by this
technique.

The goal of having a parallel halo finder is to reduce the memory and processing time overhead for large simulations;
by distributing the identification of dark matter halos across multiple, independent processors, we gain an increased ef-
ficiency, but we must construct creative means of communication. As such, the halo data container objects themselves
have been transformed into “proxy” objects, transparently communicating requests for information.

11.5 Plotting and Visualization Layer

The plotting layer, yt.raven, can plot one-, two- and three-dimensional histograms of quantities, allowing for
weighting and binning of those results. A set of pixelization routines have been written in C to provide a means of
taking a set of variable-size pixels and constructing a uniform grid of values, suitable for fast plotting in Matplotlib.
Applicable cases include non-axially perpendicular planes, allowing for oblique slices to be plotted and displayed
with publication-quality rendering. Callbacks are available for overlaying analytic solutions, grid-patch boundaries,
vectors, contours, and arbitrary annotation.

11.6 Constraints of Scale

In order to manage simulations consisting of hundreds of thousands of discrete grid patches – as well as their attendant
grid cell values – bottlenecks have been located and eliminated using the cProfile module. Additionally, the
practice of storing data about simulation outputs between instantiation of the Python objects has been extended; this
speeds subsequent startups, and enables faster response times. Because very large hierarchies consume substantial
time during the parsing and instantiation of attributes, a core set of data about the geometry and structure of the grid
objects is stored in a fast array format, eliminating the need to repeatedly convert text values to internal floating point
representation.

Enzo data is written in one of three ways, the most efficient way being via the Hierarchical Data Format (HDF5) with
a single file per processor that the simulation was run on. To limit the effect that disk access has on the process of
loading data, hand-written wrappers to the HDF5 have been inserted into the code. These wrappers are lightweight,
and operate on a single file at a time, loading data in the order it has been written to the disk. The package PyTables
was used for some time, but the instantiation of the object hierarchy was found to be too much overhead for the brief
and well-directed access desired.

11.5. Plotting and Visualization Layer 119

http://docs.python.org/library/profile.html#module-cProfile

yt Documentation, Release 1.5-beta

11.7 Frontends and Interfaces

yt was originally intended to be used from the command line, and images to be viewed either in a web browser or via
an X11 connection that forwarded the output of an image viewer. However, a happy side-effect of this architecture, as
well as the versatile Matplotlib “Canvas” interface, is that the yt API, designed to have a single interface to analysis
tasks, is easily accessed and utilized by different interfaces. By ensuring that this API is stable and flexible, GUIs,
web-interfaces, and command-line scripts can be constructed to perform common tasks.

Not all environments have access to the same level of interactivity. For large-scale datasets, being able to interact
with the data through a scripting interface enables submission to a batch processing queue, which enables appropriate
allocation of resources. For smaller datasets, the process of interactively exploring datasets via graphical user inter-
faces, exposing analytical techniques not available to an offline interface, is extremely worthwhile, as it can be highly
immersive.

The canonical graphical user interface is written in wxPython, and presents to the user a hierarchical listing of data
objects: static outputs from the simulation, as well as spatially-oriented objects derived from those outputs. The
tabbed display pane shows visual representations of these objects in the form of embedded Matplotlib figures, as seen
in Figure ref{fig:yt:reason_bds}.

An interface to the interactive Matplotlib pylab interface, via IPython, has been prepared. This enables the user to
generate plots that are thematically linked, and thus display a uniform spatial extent. Further enhancements to this
IPython interface, via the profile system, have been targeted for the next release.

11.8 Embedding yt Inside Enzo

An outstanding problem in the analysis of large scale data is that of the disk; while data can be written to the disk, read
back, and then analyzed in an arbitrary fashion, this process is not only slow but requires substantial intermediate disk
space for a substantial quantity of data that will undergo severely reductionist analysis. To address this problem, the
typical solution is to insert analysis code, generation of derived quantities, images, and so forth, into the simulation
code. However, the usual means of doing this is through either a substantial hand-written framework that attempts to
account for every analysis task, or a limited framework that only handles very limited analysis tasks.

Furthermore, by enabling in-line analysis, the relative quantity of analysis output is substantially greater than that
enabled by disk-mediated analysis. Removing numerous large files dumped to disk as a prerequisite for conducting
analysis and generating visualization allows for a much more favorable ratio of data to analyzed data. For a typical
Population III star formation simulation, the size of the data dumps can be as much as 10 gigabytes per timestep;
however, the relative amount of information that can be gleaned from these outputs is significantly smaller. Using
smaller data output mechanisms as well as more clever streaming methods can improve this ratio; however, by enabling
in-line analysis, images of the evolution of a collapsing Population III halo can be output at every single update of
the hydrodynamical time, allowing for true “movies” of star formation to be produced. By allowing for the creation
and exporting of radial profiles and other analytical methods, this technique opens up vast avenues for analysis while
simulations are being conducted, rather than afterward.

The Python/C API allows for passage of data in-memory to an instance of the Python interpreter; by embedding a
Python interpreter within each running Enzo MPI task, Enzo is able to pass existing data to a newly spawned yt
analysis task, and thus disintermediate the disk completely. While this currently works for many relatively simple
tasks, it is not currently able to decompose data spatially; as we are constrained by the parallel nature of the Enzo
domain decomposition, we attempt to avoid passing data between MPI tasks. This means if a grid is owned by MPI
task 1, it will not be passed to MPI task 2 during the analysis stage.

120 Chapter 11. yt Methods

yt Documentation, Release 1.5-beta

11.9 Generalization to Other AMR Codes

As mentioned above, yt was designed to handle and analyze data output from the AMR code Enzo. The entire
codebase has been ported to work equally well with data from other AMR codes, beginning with the Orion code
in use at the University of California, Berkeley. However, different codes make separate sets of assumptions about
outputted data, and this must be generalized to be non-Enzo specific. In this process, a balance had to be struck
between generalizing data reading and specifications, as well as simplicity and speed. This led to a minimally invasive
set of changes, which have been put into place.

The primary architectural change that had to be made was generalizing the means by which data fields were recognized
and handled by yt. Orion, specifically, stores a different set of state vectors than Enzo. For instance, momentum
replaces velocity. To accommodate this, while retaining identical sets of derived fields, a new hierarchy of derived field
containers was created: the base set of fields that are “universal,” the Enzo-specific fields, and the Orion-specific fields.
The code-specific field containers are responsible for accepting raw data output by the simulation and converting that
into a format that the “universal” field set can understand. Unit conversion, as well as transformation of state vectors,
and additionally dealing with different assumptions about cell-face and cell-centered field information. Implementing
these field containers following the “Borg” design pattern, wherein all instances of a class share a single state, enabled
all derived fields, regardless of how generated, to be shared across all data output types and instances.

In the future, yt will be expanded to handle and analyze other adaptive mesh refinement codes. Work has begun to
port it to handle data output by the FLASH code; a major difficulty in doing so, however, is the handling of the FLASH
data format. Unlike both the Enzo and Orion codes, FLASH uses an octree, cell-based refinement scheme. Two ways
forward are obvious: either each refined cell is assigned its own grid patch, or a volume segementation algorithm can
be xecuted to place rectangular prisms in refined regions, thus identifying grid patches.

By providing a unified interface to multiple, often competing, AMR codes, we will be able to utilize similar, if not
identical, analysis scripts and algorithms, which will enable direct comparison of results between groups and across
methods. Analyzing multiple datasets of identical phenomena at a single time with a single analysis framework is
an important and powerful means of comparison across methods and scientific collaborations. Furthermore, utilizing
identical means of data access allows for conversion of data between groups for subsequent analysis and re-simulation.
Through this method, the results and methods of computation can be verified and compared.

11.10 Immersive Visualization with VTK

Visualizing multi-resolution three-dimensional datasets requires careful and detailed methods. While yt makes no
claims to be a complete solution for such visualization, it provides hooks for exporting data as well as utilizing
external libraries for three-dimensional visulization.

A VTK-based frontend has been implemented, utilizing the Traits technology and the TVTK library from Enthought,
Inc (http://www.enthought.com/). Traits is a rapid application development environment that provides for semi-static
typing of variables. This provides the ability to rapidly generate GUIs, as well as validation of input and notification
based on change of state of variables.

The TVTK library provides for the construction of multi-resolution structured grid objects called
vtkHierarchicalBoxDataSets, which are processed as a group rather than as discrete, unique elements. To
enable this computation, I created a patch to expose the functionality of the vtkHierarchicalBoxDataSet to a
scripting interface; this was then exposed to the user and interactive widgets provided for manipulation and creation
of contour sets (using the marching cubes algorithm) and planes that cut the volume at arbitrary angles.

We are confined to a maximum of twelve levels due to the precision of the VTK positioning mechanism; attempting
to position with finer than single-precision coordinates results in overlapping and indistinguishable elements. In order
to expose the deepest hierarchies (with many levels of refinement) a subsection must be excised and presented to
the library. This consists of an extraction of all grids confined by a box, defined by (x0, y0, z0)...(x1, y1, z1) and
Kn...Kn+12, where the coordinates define the left and right edges and the K variable refers to the level of the base

11.9. Generalization to Other AMR Codes 121

http://www.enthought.com/

yt Documentation, Release 1.5-beta

grid presented to VTK. We scale the left and right edges of the grids in this subregion

(L− Lmin) → Ls

rl−l0(R− Lmin) → Rs

where L andR are the sets of (x0, y0, z0) and (x1, y1, z1), r is the refinement factor, l is the level, l0 is the first level of
the extraction and Ls andRs are the final scaled values. The grids from the coarsest level are replaced with a smoothed
minimal covering box, which may incorporate data from lower levels. This enables us to have a base “medium” into
which the higher-resolution levels are placed, rather than multiple disjoint root-level grids. However, by providing this
coordinate conversion in both directions, locations in the base data set can be referenced in a straightforward manner.

VTK does not provide the same quality of visualization for AMR data that other solutions do; however, it provides
a valuable and flexible means of exploring data, and one that is free and open source. As such, it is currently the
preferred direction for future ventures into immersive visualization with yt. Furthermore, because it is a base library
with a structured approach to visualizing data, it can be used as a basis for more complicated rendering schemes.
Unfortunately, because those schemes likely require a more complicated data structure, the overlap may be minimal.

The VTK camera system is straightforward and easy to manipulate; the interface between yt and VTK has been
equipped with a means of recording, manipulating, playing back and saving camera paths based on points of motion.
The user navigates from position to position by whatever means they desire, takes a “snapshot” of the current camera
position and orientation, and then specifies how many points on the line they desire. By interpolating the rotation
and translation between fixed camera positions, a smooth path of arbitrary frame frequency can be generated and
exported to other systems of visualization. Currently only linear interpolation between points is supported; higher-
order interpolation would produce smoother camera paths.

11.11 Community Involvement

I have conducted the vast majority of development on yt, accounting for 816 of the 968 version control “commits”
of the 52,000 lines of code comprising yt (and several included but external packages) as of the end of February,
2009. However, in recent months, as distribution of the toolkit has increased and as the user base has increased, a sub-
stantial uptick in user involvement and submitted development has ocurred. In particular, several of the developments
discussed here have been explored and implemented by users, including the streamlined halo analyzer, the light cone
generation, the parallel halo finder, and the original implementation of the clump finding process, based on the contour
finding primitives.

The public face to yt is that of a web page (http://yt.enzotools.org/), with integrated source control system, ticket and
bug tracker, wiki pages, mailing list, recipe book, and “pastebin” of code snippets. By specifying a command line
option to any script utilizing yt libraries, users can upload error messages and scripts to a central location, where they
can be examined, commented on, improved, and discussed.

Currently yt is being developed at four different institutions across the United States, and has users in at least ten
different institutions worldwide. The first official release (yt-1.0) was bundled with Enzo 1.5, and the next release is
being prepared by a six-person team of developers writing documentation, fixing bugs, adding features, and providing
support for other users. The availability of Python, the simplified all-in-one installation script and the growing user
community are clearly factors in this growth of usage; hopefully, in the future, the project will become less centralized
and more of a community effort.

11.12 Future Directions

As the capabilities of yt expand, the ability to extend it to perform new tasks expands as well. By publishing yt, and
generalizing it to work on multiple AMR codebases, I hope it will foster collaboration and community efforts toward
understanding astrophysical problems and physical processes, while enabling reproducible research. The roadmap for

122 Chapter 11. yt Methods

http://yt.enzotools.org/

yt Documentation, Release 1.5-beta

yt has several key milestones; the first of which will be a substantially rewritten set of documentation and the an-
nouncement of the general usability of the parallel analysis tasks. Further tasks include better, higher-level interfaces;
an expanded scripting interface to yt, and in addition larger-scale “recipes” which would provide easier entry points
to analysis and visualization.

One of the weakest aspects of yt is that of time-series analysis. Currently, individual parameter files must be examined
and instantiated; this process has been eased by a variety of “recipes” for instantiation and analysis over a set, but
unfortunately it is still hobbled by an awkward interface and the tethering of data objects to individual parameter
files. By disconnecting data objects from the hierarchy, time-series analysis would become much more tractable; this
would enable the construction of time series outputs, composed of multiple static outputs or a single set of “streaming”
outputs. These time series objects could be affiliated with data objects assigned a fixed set of parameters defining their
selection region, but a varying time component.

By extending the ability to generate synthetic observations, yt will become of greater use for the verification of
astrophysical simulations. The ultimate product should be that of telescope-simulated images; ideally, these images
could be subjected to identical scrutiny and analysis as those taken directly from telescopes. The prospects for utilizing
the same framework for generation of simulated images as well as arbitrary analysis are exciting.

11.12. Future Directions 123

yt Documentation, Release 1.5-beta

124 Chapter 11. yt Methods

CHAPTER

TWELVE

API DOCUMENTATION

This is a compilation of documentation about the internal data objects of yt. It has been separated into sections based
on purpose and its location within the code base. It’s not meant as a replacement for narrative documentation, but
instead as a supplement.

Contents:

12.1 yt.lagos Native AMR Data Structures

These are data structures for interacting with the various AMR platforms that yt understands and can analyze.

12.1.1 yt.lagos.OutputTypes Output Types

class EnzoStaticOutput(filename, data_style=None, parameter_override=None, conversion_override=None)
Enzo-specific output, set at a fixed time.

This class is a stripped down class that simply reads and parses filename without looking at the hierarchy.
data_style gets passed to the hierarchy to pre-determine the style of data-output. However, it is not strictly nec-
essary. Optionally you may specify a parameter_override dictionary that will override anything in the paarmeter
file and a conversion_override dictionary that consists of {fieldname : conversion_to_cgs} that will override the
#DataCGS.

cosmology_get_units()
Return an Enzo-fortran style dictionary of units to feed into custom routines. This is typically only neces-
sary if you are interacting with fortran code.

get_parameter(parameter, type=None)
Gets a parameter not in the parameterDict.

has_key(key)
Returns true or false

keys()
Returns a list of possible keys, from _units, parameters and _conversion_factors

class OrionStaticOutput(plotname, paramFilename=None, fparamFilename=None, data_style=7, para-
noia=False)

This class is a stripped down class that simply reads and parses, without looking at the Orion hierarchy.

@todo:

@param filename: The filename of the parameterfile we want to load @type filename: String

need to override for Orion file structure.

125

yt Documentation, Release 1.5-beta

the paramfile is usually called “inputs” and there may be a fortran inputs file usually called “probin” plotname
here will be a directory name as per BoxLib, data_style will be one of

Native IEEE (not implemented in yt) ASCII (not implemented in yt)

has_key(key)
Returns true or false

keys()
Returns a list of possible keys, from _units, parameters and _conversion_factors

class StaticOutput(filename, data_style=None)
Base class for generating new output types. Principally consists of a filename and a data_style which will be
passed on to children.

has_key(key)
Returns true or false

keys()
Returns a list of possible keys, from _units, parameters and _conversion_factors

12.1.2 yt.lagos.HierarchyTypes Grid Hierarchies

class EnzoHierarchy(pf, data_style=None)
This is the grid structure as Enzo sees it, with some added bonuses. It’s primarily used as a class factory, to
generate data objects and access grids.

It should never be created directly – you should always access it via calls to an affiliated EnzoStaticOutput.

On instantiation, it processes the hierarchy and generates the grids.

export_boxes_pv(filename)
Exports the grid structure in partiview text format.

export_particles_pb(filename, filter=1, indexboundary=0, fields=None, scale=1.0)
Exports all the star particles, or a subset, to pb-format filename for viewing in partiview. Filters based
on particle_type=*filter*, particle_index>=*indexboundary*, and exports fields, if supplied. Otherwise,
index, position(x,y,z). Optionally scale by a given factor before outputting.

findMax(*args, **kwargs)
Returns (value, center) of location of maximum for a given field.

find_max(field, finestLevels=True)
Returns (value, center) of location of maximum for a given field.

find_min(field)
Returns (value, center) of location of minimum for a given field

find_point(coord)
Returns the (objects, indices) of grids containing an (x,y,z) point

find_ray_grids(coord, axis)
Returns the (objects, indices) of grids that an (x,y) ray intersects along axis

find_slice_grids(coord, axis)
Returns the (objects, indices) of grids that a slice intersects along axis

find_sphere_grids(center, radius)
Returns objects, indices of grids within a sphere

get_box_grids(left_edge, right_edge)
Gets back all the grids between a left edge and right edge

126 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

get_data(node, name)
Return the dataset with a given name located at node in the datafile.

get_smallest_dx()
Returns (in code units) the smallest cell size in the simulation.

load_object(name)
Load and return and object from the data_file using the Pickle protocol, under the name name on the node
/Objects.

print_stats()
Prints out (stdout) relevant information about the simulation

save_data(array, node, name, set_attr=None, force=False, passthrough=False)
Arbitrary numpy data will be saved to the region in the datafile described by node and name. If data file
does not exist, it throws no error and simply does not save.

save_object(obj, name)
Save an object (obj) to the data_file using the Pickle protocol, under the name name on the node /Objects.

select_grids(level)
Returns an array of grids at level.

class OrionHierarchy(pf, data_style=7)

export_boxes_pv(filename)
Exports the grid structure in partiview text format.

export_particles_pb(filename, filter=1, indexboundary=0, fields=None, scale=1.0)
Exports all the star particles, or a subset, to pb-format filename for viewing in partiview. Filters based
on particle_type=*filter*, particle_index>=*indexboundary*, and exports fields, if supplied. Otherwise,
index, position(x,y,z). Optionally scale by a given factor before outputting.

findMax(*args, **kwargs)
Returns (value, center) of location of maximum for a given field.

find_max(field, finestLevels=True)
Returns (value, center) of location of maximum for a given field.

find_min(field)
Returns (value, center) of location of minimum for a given field

find_point(coord)
Returns the (objects, indices) of grids containing an (x,y,z) point

find_ray_grids(coord, axis)
Returns the (objects, indices) of grids that an (x,y) ray intersects along axis

find_slice_grids(coord, axis)
Returns the (objects, indices) of grids that a slice intersects along axis

find_sphere_grids(center, radius)
Returns objects, indices of grids within a sphere

get_box_grids(left_edge, right_edge)
Gets back all the grids between a left edge and right edge

get_data(node, name)
Return the dataset with a given name located at node in the datafile.

get_smallest_dx()
Returns (in code units) the smallest cell size in the simulation.

12.1. yt.lagos Native AMR Data Structures 127

yt Documentation, Release 1.5-beta

load_object(name)
Load and return and object from the data_file using the Pickle protocol, under the name name on the node
/Objects.

print_stats()
Prints out (stdout) relevant information about the simulation

readGlobalHeader(filename, paranoid_read)
read the global header file for an Orion plotfile output.

save_data(array, node, name, set_attr=None, force=False, passthrough=False)
Arbitrary numpy data will be saved to the region in the datafile described by node and name. If data file
does not exist, it throws no error and simply does not save.

save_object(obj, name)
Save an object (obj) to the data_file using the Pickle protocol, under the name name on the node /Objects.

select_grids(level)
Returns an array of grids at level.

class AMRHierarchy(pf)

export_boxes_pv(filename)
Exports the grid structure in partiview text format.

export_particles_pb(filename, filter=1, indexboundary=0, fields=None, scale=1.0)
Exports all the star particles, or a subset, to pb-format filename for viewing in partiview. Filters based
on particle_type=*filter*, particle_index>=*indexboundary*, and exports fields, if supplied. Otherwise,
index, position(x,y,z). Optionally scale by a given factor before outputting.

findMax(*args, **kwargs)
Returns (value, center) of location of maximum for a given field.

find_max(field, finestLevels=True)
Returns (value, center) of location of maximum for a given field.

find_min(field)
Returns (value, center) of location of minimum for a given field

find_point(coord)
Returns the (objects, indices) of grids containing an (x,y,z) point

find_ray_grids(coord, axis)
Returns the (objects, indices) of grids that an (x,y) ray intersects along axis

find_slice_grids(coord, axis)
Returns the (objects, indices) of grids that a slice intersects along axis

find_sphere_grids(center, radius)
Returns objects, indices of grids within a sphere

get_box_grids(left_edge, right_edge)
Gets back all the grids between a left edge and right edge

get_data(node, name)
Return the dataset with a given name located at node in the datafile.

get_smallest_dx()
Returns (in code units) the smallest cell size in the simulation.

128 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

load_object(name)
Load and return and object from the data_file using the Pickle protocol, under the name name on the node
/Objects.

print_stats()
Prints out (stdout) relevant information about the simulation

save_data(array, node, name, set_attr=None, force=False, passthrough=False)
Arbitrary numpy data will be saved to the region in the datafile described by node and name. If data file
does not exist, it throws no error and simply does not save.

save_object(obj, name)
Save an object (obj) to the data_file using the Pickle protocol, under the name name on the node /Objects.

select_grids(level)
Returns an array of grids at level.

12.1.3 yt.lagos.BaseGridType Grid Types

class EnzoGridBase(id, filename=None, hierarchy=None)
Class representing a single Enzo Grid instance.

Returns an instance of EnzoGrid with id, associated with filename and hierarchy.

clear_all()
Clears all datafields from memory and calls clear_derived_quantities().

clear_all_grid_references()
This clears out all references this grid has to any others, as well as the hierarchy. It’s like extra-cleaning
after clear_data.

clear_data()
Clear out the following things: child_mask, child_indices, all fields, all field parameters.

clear_derived_quantities()
Clears coordinates, child_indices, child_mask.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

find_max(field)
Returns value, index of maximum value of field in this gird

find_min(field)
Returns value, index of minimum value of field in this gird

get_data(field)
Returns a field or set of fields for a key or set of keys

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

get_global_startindex()
Return the integer starting index for each dimension at the current level.

get_position(index)
Returns center position of an index

has_field_parameter(name)
Checks if a field parameter is set.

12.1. yt.lagos Native AMR Data Structures 129

yt Documentation, Release 1.5-beta

has_key(key)
Checks if a data field already exists.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

set_filename(filename)
Intelligently set the filename.

class OrionGridBase(LeftEdge, RightEdge, index, level, filename, offset, dimensions, start, stop, para-
noia=False)

clear_all()
Clears all datafields from memory and calls clear_derived_quantities().

clear_all_grid_references()
This clears out all references this grid has to any others, as well as the hierarchy. It’s like extra-cleaning
after clear_data.

clear_data()
Clear out the following things: child_mask, child_indices, all fields, all field parameters.

clear_derived_quantities()
Clears coordinates, child_indices, child_mask.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

find_max(field)
Returns value, index of maximum value of field in this gird

find_min(field)
Returns value, index of minimum value of field in this gird

get_data(field)
Returns a field or set of fields for a key or set of keys

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

get_position(index)
Returns center position of an index

has_field_parameter(name)
Checks if a field parameter is set.

has_key(key)
Checks if a data field already exists.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

class AMRGridPatch(id, filename=None, hierarchy=None)

130 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

clear_all()
Clears all datafields from memory and calls clear_derived_quantities().

clear_all_grid_references()
This clears out all references this grid has to any others, as well as the hierarchy. It’s like extra-cleaning
after clear_data.

clear_data()
Clear out the following things: child_mask, child_indices, all fields, all field parameters.

clear_derived_quantities()
Clears coordinates, child_indices, child_mask.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

find_max(field)
Returns value, index of maximum value of field in this gird

find_min(field)
Returns value, index of minimum value of field in this gird

get_data(field)
Returns a field or set of fields for a key or set of keys

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

get_position(index)
Returns center position of an index

has_field_parameter(name)
Checks if a field parameter is set.

has_key(key)
Checks if a data field already exists.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

12.2 yt.lagos Physical and Derived Data Objects

12.2.1 yt.lagos.BaseDataTypes Data Containers and Physical Objects

yt provides a number of data containers, defined such that they satisfy a logical need. Each of these provides only
the finest-resolution cells, unless an option is available to restrict the levels from which they draw, as is the case with
AMRCoveringGrid.

Each of these implements the same primary protocol - all data values can be accessed dictionary-style:

>>> object["Density"]
>>> object["Density"].max()

For more information about objects, see Object Methodology and Using and Manipulating Objects and Fields.

12.2. yt.lagos Physical and Derived Data Objects 131

yt Documentation, Release 1.5-beta

Base Classes

class AMRData(pf, fields, **kwargs)
Generic AMRData container. By itself, will attempt to generate field, read fields (method defined by derived
classes) and deal with passing back and forth field parameters.

Typically this is never called directly, but only due to inheritance. It associates a StaticOutput with the
class, sets its initial set of fields, and the remainder of the arguments are passed as field_parameters.

clear_data()
Clears out all data from the AMRData instance, freeing memory.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

has_field_parameter(name)
Checks if a field parameter is set.

has_key(key)
Checks if a data field already exists.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

class AMR1DData(pf, fields, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMRData, yt.lagos.BaseDataTypes.GridPropertiesMixin

clear_data()
Clears out all data from the AMRData instance, freeing memory.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

has_field_parameter(name)
Checks if a field parameter is set.

has_key(key)
Checks if a data field already exists.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

select_grids(level)
Return all grids on a given level.

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

132 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

class AMR2DData(axis, fields, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMRData, yt.lagos.BaseDataTypes.GridPropertiesMixin,
yt.lagos.ParallelTools.ParallelAnalysisInterface

Prepares the AMR2DData, normal to axis. If axis is 4, we are not aligned with any axis.

clear_data()
Clears out all data from the AMRData instance, freeing memory.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

get_data(fields=None)
Iterates over the list of fields and generates/reads them all.

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

has_field_parameter(name)
Checks if a field parameter is set.

has_key(key)
Checks if a data field already exists.

interpolate_discretize(LE, RE, field, side, log_spacing=True)
This returns a uniform grid of points between LE and RE, interpolated using the nearest neighbor method,
with side points on a side.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

select_grids(level)
Return all grids on a given level.

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

class AMR3DData(center, fields, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMRData, yt.lagos.BaseDataTypes.GridPropertiesMixin

Returns an instance of AMR3DData, or prepares one. Usually only used as a base class. Note that center is
supplied, but only used for fields and quantities that require it.

clear_data()
Clears out all data from the AMRData instance, freeing memory.

convert(datatype)
This will attempt to convert a given unit to cgs from code units. It either returns the multiplicative factor
or throws a KeyError.

cut_region(field_cuts)
Return an InLineExtractedRegion, where the grid cells are cut on the fly with a set of field_cuts.

extract_connected_sets(field, num_levels, min_val, max_val, log_space=True, cumulative=True,
cache=False)

This function will create a set of contour objects, defined by having connected cell structures, which can
then be studied and used to ‘paint’ their source grids, thus enabling them to be plotted.

extract_region(indices)
Return an ExtractedRegion where the points contained in it are defined as the points in this data object
with the given indices.

12.2. yt.lagos Physical and Derived Data Objects 133

yt Documentation, Release 1.5-beta

get_field_parameter(name, default=None)
This is typically only used by derived field functions, but it returns parameters used to generate fields.

has_field_parameter(name)
Checks if a field parameter is set.

has_key(key)
Checks if a data field already exists.

paint_grids(field, value, default_value=None)
This function paints every cell in our dataset with a given value. If default_value is given, the other values
for the given in every grid are discarded and replaced with default_value. Otherwise, the field is mandated
to ‘know how to exist’ in the grid.

Note that this only paints the cells in the dataset, so cells in grids with child cells are left untouched.

save_object(name, filename=None)
Save an object. If filename is supplied, it will be stored in a :module:‘shelve‘ file of that name. Otherwise,
it will be stored via yt.lagos.AMRHierarchy.save_object().

select_grids(level)
Return all grids on a given level.

set_field_parameter(name, val)
Here we set up dictionaries that get passed up and down and ultimately to derived fields.

class FakeGridForParticles(grid)
Mock up a grid to insert particle positions and radii into for purposes of confinement in an AMR3DData.

1D Data Containers

Each of these inherits from AMR1DData, and so has all the member functions defined there.

class AMROrthoRayBase(axis, coords, fields=None, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR1DData

Dimensionality is reduced to one, and an ordered list of points at an (x,y) tuple along axis are available.

2D Data Containers

class AMRSliceBase(axis, coord, fields=None, center=None, pf=None, node_name=False, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR2DData

AMRSlice is an orthogonal slice through the data, taking all the points at the finest resolution available and then
indexing them. It is more appropriately thought of as a slice ‘operator’ than an object, however, as its field and
coordinate can both change.

Slice along axisHow do I specify an axis?, at the coordinate coord. Optionally supply fields.

reslice(coord)
Change the entire dataset, clearing out the current data and slicing at a new location. Not terribly useful
except for in-place plot changes.

shift(val)
Moves the slice coordinate up by either a floating point value, or an integer number of indices of the finest
grid.

class AMRCuttingPlaneBase(normal, center, fields=None, node_name=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR2DData

134 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

AMRCuttingPlane is an oblique plane through the data, defined by a normal vector and a coordinate. It attempts
to guess an ‘up’ vector, which cannot be overridden, and then it pixelizes the appropriate data onto the plane
without interpolation.

The Cutting Plane slices at an oblique angle, where we use the normal vector and the center to define the viewing
plane. The ‘up’ direction is guessed at automatically.

class AMRProjBase(axis, field, weight_field=None, max_level=None, center=None, pf=None, source=None,
node_name=None, field_cuts=None, serialize=True, **kwargs)

Bases: yt.lagos.BaseDataTypes.AMR2DData

AMRProj is a projection of a field along an axis. The field can have an associated weight_field, in which case
the values are multiplied by a weight before being summed, and then divided by the sum of that weight.

3D Data Containers

class AMRSphereBase(center, radius, fields=None, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR3DData

A sphere of points

The most famous of all the data objects, we define it via a center and a radius.

class AMRRegionBase(center, left_edge, right_edge, fields=None, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR3DData

AMRRegions are rectangular prisms of data.

We create an object with a set of three left_edge coordinates, three right_edge coordinates, and a center that
need not be the center.

class AMRCylinderBase(center, normal, radius, height, fields=None, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR3DData

We can define a cylinder (or disk) to act as a data object.

By providing a center, a normal, a radius and a height we can define a cylinder of any proportion. Only cells
whose centers are within the cylinder will be selected.

class AMRGridCollection(center, grid_list, fields=None, pf=None, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR3DData

An arbitrary selection of grids, within which we accept all points.

By selecting an arbitrary grid_list, we can act on those grids. Child cells are not returned.

class AMRCoveringGridBase(level, left_edge, right_edge, dims, fields=None, pf=None, num_ghost_zones=0,
use_pbar=True, **kwargs)

Bases: yt.lagos.BaseDataTypes.AMR3DData

Covering grids represent fixed-resolution data over a given region. In order to achieve this goal – for instance in
order to obtain ghost zones – grids up to and including the indicated level are included. No interpolation is done
(as that would affect the ‘power’ on small scales) on the input data.

The data object returned will consider grids up to level in generating fixed resolution data between left_edge and
right_edge that is dims (3-values) on a side.

flush_data(field=None)
Any modifications made to the data in this object are pushed back to the originating grids, except the cells
where those grids are both below the current level and have child cells.

class AMRSmoothedCoveringGridBase(*args, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMRCoveringGridBase

12.2. yt.lagos Physical and Derived Data Objects 135

yt Documentation, Release 1.5-beta

class ExtractedRegionBase(base_region, indices, force_refresh=True, **kwargs)
Bases: yt.lagos.BaseDataTypes.AMR3DData

ExtractedRegions are arbitrarily defined containers of data, useful for things like selection along a baryon field.

12.2.2 yt.lagos.DerivedQuantities Derived Quantities

All of these are accessed via the .quantities[] object, and feeding it the function name without the leading
underscore. For instance:

my_sphere.quantities["TotalMass"]()

They all accept the lazy_reader option, which governs whether the calculation is performed out of core or not.
For more information, see Derived Quantities.

_AngularMomentumVector(data)
This function returns the mass-weighted average angular momentum vector.

_BaryonSpinParameter(data)
This function returns the spin parameter for the baryons, but it uses the particles in calculating enclosed mass.

_BulkVelocity(data)
This function returns the mass-weighted average velocity in the object.

_CenterOfMass(data)
This function takes no arguments and returns the location of the center of mass of the non-particle data in the
object.

_Extrema(data, fields)
This function returns the extrema of a set of fields

Parameter fields – A field name, or a list of field names

_IsBound(data, truncate=True, include_thermal_energy=False)
This returns whether or not the object is gravitationally bound

Parameters

• truncate – Should the calculation stop once the ratio of gravitational:kinetic is 1.0?

• include_thermal_energy – Should we add the energy from ThermalEnergy on to the kinetic
energy to calculate binding energy?

_MaxLocation(data, field)
This function returns the location of the maximum of a set of fields.

_ParticleSpinParameter(data)
This function returns the spin parameter for the baryons, but it uses the particles in calculating enclosed mass.

_TotalMass(data)
This function takes no arguments and returns the sum of cell masses and particle masses in the object.

_TotalQuantity(data, fields)
This function sums up a given field over the entire region

Parameter fields – The fields to sum up

_WeightedAverageQuantity(data, field, weight)
This function returns an averaged quantity.

Parameters

• field – The field to average

136 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

• weight – The field to weight by

12.2.3 yt.lagos.FieldInfoContainer Derived Field Objects

class FieldInfoContainer()
This is a generic field container. It contains a list of potential derived fields, all of which know how to act on
a data object and return a value. This object handles converting units as well as validating the availability of a
given field.

add_field(name, function=None, **kwargs)
Add a new field, along with supplemental metadata, to the list of available fields. This respects a number
of arguments, all of which are passed on to the constructor for DerivedField.

keys()
Return all the field names this object knows about.

class EnzoFieldContainer()
This is a container for Enzo-specific fields.

class OrionFieldContainer()
All Orion-specific fields are stored in here.

class DerivedField(name, function, convert_function=None, units=”, projected_units=”, take_log=True,
validators=None, particle_type=False, vector_field=False, display_field=True,
not_in_all=False, display_name=None, projection_conversion=’cm’)

This is the base class used to describe a cell-by-cell derived field.

Parameters

• name – is the name of the field.

• function – is a function handle that defines the field

• convert_function – must convert to CGS, if it needs to be done

• units – is a mathtext-formatted string that describes the field

• projected_units – if we display a projection, what should the units be?

• take_log – describes whether the field should be logged

• validators – is a list of FieldValidator objects

• particle_type – is this field based on particles?

• vector_field – describes the dimensionality of the field

• display_field – governs its appearance in the dropdowns in reason

• not_in_all – is used for baryon fields from the data that are not in all the grids

• display_name – a name used in the plots

• projection_conversion – which unit should we multiply by in a projection?

check_available(data)
This raises an exception of the appropriate type if the set of validation mechanisms are not met, and
otherwise returns True.

get_dependencies(*args, **kwargs)
This returns a list of names of fields that this field depends on.

get_label(projected=False)
Return a data label for the given field, inluding units.

12.2. yt.lagos Physical and Derived Data Objects 137

yt Documentation, Release 1.5-beta

get_projected_units()
Return a string describing the units if the field has been projected.

get_source()
Return a string containing the source of the function (if possible.)

get_units()
Return a string describing the units.

class ValidateParameter(parameters)
This validator ensures that the parameter file has a given parameter.

class ValidateDataField(field)
This validator ensures that the output file has a given data field stored in it.

class ValidateProperty(prop)
This validator ensures that the data object has a given python attribute.

class ValidateSpatial(ghost_zones=0, fields=None)
This validator ensures that the data handed to the field is of spatial nature – that is to say, 3-D.

class ValidateGridType()
This validator ensures that the data handed to the field is an actual grid patch, not a covering grid of any kind.

12.2.4 yt.lagos.Profiles Profiling

Profiling in yt is a means of generating arbitrary histograms – for instance, phase diagrams, radial profiles, and even
more complicated 3D examinations.

class BinnedProfile1D(data_source, n_bins, bin_field, lower_bound, upper_bound, log_space=True,
lazy_reader=False, left_collect=False)

Bases: yt.lagos.Profiles.BinnedProfile

A ‘Profile’ produces either a weighted (or unweighted) average or a straight sum of a field in a bin defined by
another field. In the case of a weighted average, we have: p_i = sum(w_i * v_i) / sum(w_i)

We accept a data_source, which will be binned into n_bins by the field bin_field between the lower_bound and
the upper_bound. These bins may or may not be equally divided in log_space, and the lazy_reader flag controls
whether we use a memory conservative approach.

add_fields(fields, weight=’CellMassMsun’, accumulation=False)
We accept a list of fields which will be binned if weight is not None and otherwise summed. accumulation
determines whether or not they will be accumulated from low to high along the appropriate axes.

class BinnedProfile2D(data_source, x_n_bins, x_bin_field, x_lower_bound, x_upper_bound, x_log,
y_n_bins, y_bin_field, y_lower_bound, y_upper_bound, y_log, lazy_reader=False,
left_collect=False)

Bases: yt.lagos.Profiles.BinnedProfile

A ‘Profile’ produces either a weighted (or unweighted) average or a straight sum of a field in a bin defined by
two other fields. In the case of a weighted average, we have: p_i = sum(w_i * v_i) / sum(w_i)

We accept a data_source, which will be binned into x_n_bins by the field x_bin_field between the
x_lower_bound and the x_upper_bound and then again binned into y_n_bins by the field y_bin_field between
the y_lower_bound and the y_upper_bound. These bins may or may not be equally divided in log-space as spec-
ified by x_log and y_log, and the lazy_reader flag controls whether we use a memory conservative approach.

add_fields(fields, weight=’CellMassMsun’, accumulation=False)
We accept a list of fields which will be binned if weight is not None and otherwise summed. accumulation
determines whether or not they will be accumulated from low to high along the appropriate axes.

138 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

write_out(filename, format=’%0.16e’)
Write out the values of x,y,v in ascii to filename for every field in the profile. Optionally a format can be
specified.

class BinnedProfile3D(data_source, x_n_bins, x_bin_field, x_lower_bound, x_upper_bound, x_log,
y_n_bins, y_bin_field, y_lower_bound, y_upper_bound, y_log, z_n_bins, z_bin_field,
z_lower_bound, z_upper_bound, z_log, lazy_reader=False)

Bases: yt.lagos.Profiles.BinnedProfile

add_fields(fields, weight=’CellMassMsun’, accumulation=False)
We accept a list of fields which will be binned if weight is not None and otherwise summed. accumulation
determines whether or not they will be accumulated from low to high along the appropriate axes.

store_profile(name, force=False)
By identifying the profile with a fixed, user-input name we can store it in the serialized data section of the
hierarchy file. force governs whether or not an existing profile with that name will be overwritten.

class StoredBinnedProfile3D(pf, name)
Bases: yt.lagos.Profiles.BinnedProfile3D

Given a pf parameterfile and the name of a stored profile, retrieve it into a read-only data structure.

12.2.5 yt.lagos.ContourFinder Contour Finding

Typically this is done via the extract_connected_sets() on a data object. However, you can call it manually,
as is done in the clump finding scripts.

identify_contours(data_source, field, min_val, max_val, cached_fields=None)
Given a data_source, we will search for topologically connected sets in field between min_val and max_val.

class GridConsiderationQueue(white_list, priority_func=None)
This class exists to serve the contour finder. It ensures that we can create a cascading set of queue dependencies,
and if a grid is touched again ahead of time we can bump it to the top of the queue again. It like has few uses.

12.2.6 yt.lagos.HaloFinding Halo Finding

yt now includes the HOP algorithm and implementation from the Enzo source distribution, with some modifications
by both Stephen Skory and Matthew Turk.

HaloFinder
alias of HOPHaloFinder

class HaloList(data_source, dm_only=True)
Run hop on data_source with a given density threshold. If dm_only is set, only run it on the dark matter particles,
otherwise on all particles. Returns an iterable collection of HopGroup items.

write_out(filename)
Write out standard HOP information to filename.

class Halo(halo_list, id, indices=None)
A data source that returns particle information about the members of a HOP-identified halo.

bulk_velocity()
Returns the mass-weighted average velocity.

center_of_mass()
Calculate and return the center of mass.

12.2. yt.lagos Physical and Derived Data Objects 139

yt Documentation, Release 1.5-beta

get_sphere(center_of_mass=True)
Returns an EnzoSphere centered on either the point of maximum density or the center_of_mass, with the
maximum radius of the halo.

maximum_density()
Return the HOP-identified maximum density.

maximum_density_location()
Return the location HOP identified as maximally dense.

maximum_radius(center_of_mass=True)
Returns the maximum radius in the halo for all particles, either from the point of maximum density or from
the (default) center_of_mass.

total_mass()
Returns the total mass in solar masses of the halo.

The specific halo finding algorithm can be specified by selecting the appropriate HaloFinder object. By default, HOP
is used.

class HOPHaloFinder(pf, threshold=160, dm_only=True, padding=0.02)

class FOFHaloFinder(pf, link=0.20000000000000001, dm_only=True, padding=0.02)

12.3 yt.raven Plotting and Plot Interfaces

12.3.1 yt.raven.PlotCollection Plot Collection

PlotCollection is the basic means by which most of your backend-plotting will take place, and it contains a number of
convenience functions for generating images and manipulating existing plots.

class PlotCollection(pf, center=None, deliverator_id=-1)
Generate a collection of linked plots using pf as a source, optionally submitting to the deliverator with deliver-
ator_id and with center, which will otherwise be taken to be the point of maximum density.

add_cutting_plane(field, normal, center=None, use_colorbar=True, figure=None, axes=None, fig_size=None,
obj=None, **kwargs)

Generate a cutting plane of field with normal, centered at center (defaults to PlotCollection center) with
use_colorbar specifying whether the plot is naked or not and optionally providing pre-existing Matplotlib
figure and axes objects. fig_size in (height_inches, width_inches). If so desired, obj is a pre-existing cutting
plane object.

add_phase_object(data_source, fields, cmap=None, weight=’CellMassMsun’, accumulation=False,
x_bins=64, x_log=True, x_bounds=None, y_bins=64, y_log=True, y_bounds=None,
lazy_reader=False, id=None, axes=None, figure=None)

Given a data_source, and fields, automatically generate a 2D profile and plot it. id is used internally to add
onto the prefix, and will be automatically generated if not given. Remainder of arguments are identical to
add_profile_object().

add_phase_sphere(radius, unit, fields, **kwargs)
Given a radius and unit, generate a 2D profile from a sphere, with fields as the x,y,z. Automatically weights
z by CellMassMsun. kwargs get passed onto add_phase_object().

add_profile_object(data_source, fields, weight=’CellMassMsun’, accumulation=False, x_bins=64,
x_log=True, x_bounds=None, lazy_reader=False, id=None, axes=None, figure=None)

Use an existing data object, data_source, to be the source of a one-dimensional profile. fields will define the
x and y bin-by fields, weight is used to weight the y value, accumulation determines if y is summed along
x, x_bins, x_log and x_bounds define the means of choosing the bins. id is used internally to differentiate
between multiple plots in a single collection. lazy_reader determines the memory-conservative status.

140 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

add_profile_sphere(radius, unit, fields, **kwargs)
Generate a spherical 1D profile, given only a radius, a unit, and at least two fields. Any remaining kwargs
will be passed onto add_profile_object().

add_projection(*args, **kwargs)
Generate a projection of field along axis, optionally giving a weight_field-weighted average with
use_colorbar specifying whether the plot is naked or not and optionally providing pre-existing Matplotlib
figure and axes objects. fig_size in (height_inches, width_inches)

add_projection_interpolated(*args, **kwargs)
Generate a projection of field along axis, optionally giving a weight_field-weighted average with
use_colorbar specifying whether the plot is naked or not and optionally providing pre-existing Matplotlib
figure and axes objects. fig_size in (height_inches, width_inches)

The projection will be interpolated using the delaunay module, with natural neighbor interpolation.

add_slice(*args, **kwargs)
Generate a slice through field along axis, optionally at [axis]=*coord*, with the center attribute given
(some degeneracy with coord, but not complete), with use_colorbar specifying whether the plot is naked
or not and optionally providing pre-existing Matplotlib figure and axes objects. fig_size in (height_inches,
width_inches)

add_slice_interpolated(*args, **kwargs)
Generate a slice through field along axis, optionally at [axis]=*coord*, with the center attribute given
(some degeneracy with coord, but not complete), with use_colorbar specifying whether the plot is naked
or not and optionally providing pre-existing Matplotlib figure and axes objects. fig_size in (height_inches,
width_inches)

The slice will be interpolated using the delaunay module, with natural neighbor interpolation.

autoscale()
Turn back on autoscaling.

clear_plots()
Delete all plots and their attendant data.

save(basename=None, format=’png’, override=False, force_save=False)
Same plots with automatically generated names, prefixed with basename (including directory path) unless
override is specified, and in format.

set_cmap(cmap)
Change the colormap of all plots to cmap.

set_lim(lim)
Shorthand for setting x,y at same time. lim should be formatted as (xmin,xmax,ymin,ymax)

set_width(width, unit)
Set the witdh of the slices, cutting planes and projections to be width units

set_xlim(xmin, xmax)
Set the x boundaries of all plots.

set_ylim(ymin, ymax)
Set the y boundaries of all plots.

set_zlim(zmin, zmax, **kwargs)
Set the limits of the colorbar. ‘min’ or ‘max’ are possible inputs when combined with dex=value, where
value gives the maximum number of dex to go above/below the min/max. If value is larger than the true
range of values, min/max are limited to true range.

Only ONE of the following options can be specified. If all 3 are specified, they will be used in the following
precedence order:

12.3. yt.raven Plotting and Plot Interfaces 141

yt Documentation, Release 1.5-beta

ticks - a list of floating point numbers at which to put ticks minmaxtick - display DEFAULT ticks
with min & max also displayed nticks - if ticks not specified, can automatically determine a

number of ticks to be evenly spaced in log space

switch_field(field)
Change all the fields displayed to be field

switch_z(field)
Change all the fields displayed to be field

class PlotCollectionInteractive(*args, **kwargs)

add_cutting_plane(*args, **kwargs)
Generate a cutting plane of field with normal, centered at center (defaults to PlotCollection center) with
use_colorbar specifying whether the plot is naked or not and optionally providing pre-existing Matplotlib
figure and axes objects. fig_size in (height_inches, width_inches). If so desired, obj is a pre-existing cutting
plane object.

add_phase_object(*args, **kwargs)
Given a data_source, and fields, automatically generate a 2D profile and plot it. id is used internally to add
onto the prefix, and will be automatically generated if not given. Remainder of arguments are identical to
add_profile_object().

add_phase_sphere(*args, **kwargs)
Given a radius and unit, generate a 2D profile from a sphere, with fields as the x,y,z. Automatically weights
z by CellMassMsun. kwargs get passed onto add_phase_object().

add_profile_object(*args, **kwargs)
Use an existing data object, data_source, to be the source of a one-dimensional profile. fields will define the
x and y bin-by fields, weight is used to weight the y value, accumulation determines if y is summed along
x, x_bins, x_log and x_bounds define the means of choosing the bins. id is used internally to differentiate
between multiple plots in a single collection. lazy_reader determines the memory-conservative status.

add_profile_sphere(*args, **kwargs)
Generate a spherical 1D profile, given only a radius, a unit, and at least two fields. Any remaining kwargs
will be passed onto add_profile_object().

add_projection(*args, **kwargs)
Generate a projection of field along axis, optionally giving a weight_field-weighted average with
use_colorbar specifying whether the plot is naked or not and optionally providing pre-existing Matplotlib
figure and axes objects. fig_size in (height_inches, width_inches)

add_projection_interpolated(*args, **kwargs)
Generate a projection of field along axis, optionally giving a weight_field-weighted average with
use_colorbar specifying whether the plot is naked or not and optionally providing pre-existing Matplotlib
figure and axes objects. fig_size in (height_inches, width_inches)

The projection will be interpolated using the delaunay module, with natural neighbor interpolation.

add_slice(*args, **kwargs)
Generate a slice through field along axis, optionally at [axis]=*coord*, with the center attribute given
(some degeneracy with coord, but not complete), with use_colorbar specifying whether the plot is naked
or not and optionally providing pre-existing Matplotlib figure and axes objects. fig_size in (height_inches,
width_inches)

add_slice_interpolated(*args, **kwargs)
Generate a slice through field along axis, optionally at [axis]=*coord*, with the center attribute given
(some degeneracy with coord, but not complete), with use_colorbar specifying whether the plot is naked

142 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

or not and optionally providing pre-existing Matplotlib figure and axes objects. fig_size in (height_inches,
width_inches)

The slice will be interpolated using the delaunay module, with natural neighbor interpolation.

autoscale(*args, **kwargs)
Turn back on autoscaling.

set_cmap(*args, **kwargs)
Change the colormap of all plots to cmap.

set_lim(*args, **kwargs)
Shorthand for setting x,y at same time. lim should be formatted as (xmin,xmax,ymin,ymax)

set_width(*args, **kwargs)
Set the witdh of the slices, cutting planes and projections to be width units

set_xlim(*args, **kwargs)
Set the x boundaries of all plots.

set_ylim(*args, **kwargs)
Set the y boundaries of all plots.

set_zlim(*args, **kwargs)
Set the limits of the colorbar. ‘min’ or ‘max’ are possible inputs when combined with dex=value, where
value gives the maximum number of dex to go above/below the min/max. If value is larger than the true
range of values, min/max are limited to true range.

Only ONE of the following options can be specified. If all 3 are specified, they will be used in the following
precedence order:

ticks - a list of floating point numbers at which to put ticks minmaxtick - display DEFAULT ticks
with min & max also displayed nticks - if ticks not specified, can automatically determine a

number of ticks to be evenly spaced in log space

switch_field(*args, **kwargs)
Change all the fields displayed to be field

get_multi_plot(nx, ny, colorbar=’vertical’, bw=4, dpi=300)
This returns nx and ny axes on a single figure, set up so that the colorbar can be placed either vertically or
horizontally in a bonus column or row, respectively. The axes all have base width of bw inches.

12.3.2 yt.raven.PlotInterface Raw Plot Interface

get_slice(pf, *args, **kwargs)
Get a single slice plot, with standard field, axis and center arguments.

get_projection(pf, *args, **kwargs)
Get a single projection plot, with standard field, axis and center arguments.

12.3.3 yt.raven.FixedResolution Pixelization Interface

class FixedResolutionBuffer(data_source, bounds, buff_size, antialias=True)
Accepts a 2D data object, such as a Projection or Slice, and implements a protocol for generating a pixelized,
fixed-resolution buffer. bounds is (px_min,px_max,py_min,py_max), buff_size is (width, height), and antialias
is a boolean referring to whether or not the buffer should have pixel boundary antialiasing.

convert_distance_x(distance)
This converts a real distance to a pixel distance in x.

12.3. yt.raven Plotting and Plot Interfaces 143

yt Documentation, Release 1.5-beta

convert_distance_y(distance)
This converts a real distance to a pixel distance in y.

convert_to_pixel(coords)
This converts a code-location to an image-location

export_fits(filename_prefix, fields=None)
This will export a set of FITS images of either the fields specified or all the fields already in the object.
The output filenames are filename_prefix plus an underscore plus the name of the field.

This requires the pyfits module, which is a standalone module provided by STSci to interface with FITS-
format files.

export_hdf5(filename, fields=None)
This function opens (append-mode) an HDF5 file and adds all of the requested fields (default: All) to the
top level of the data file.

open_in_ds9(field, take_log=True)
This will open a given field in DS9. This requires the numdisplay package, which is a simple download
from STSci. Furthermore, it presupposed that it can connect to DS9 – that is, that DS9 is already open.

class ObliqueFixedResolutionBuffer(data_source, bounds, buff_size, antialias=True)
This object is a subclass of yt.raven.FixedResolution.FixedResolutionBuffer that supports
non-aligned input data objects, primarily cutting planes.

Accepts a 2D data object, such as a Projection or Slice, and implements a protocol for generating a pixelized,
fixed-resolution buffer. bounds is (px_min,px_max,py_min,py_max), buff_size is (width, height), and antialias
is a boolean referring to whether or not the buffer should have pixel boundary antialiasing.

convert_distance_x(distance)
This converts a real distance to a pixel distance in x.

convert_distance_y(distance)
This converts a real distance to a pixel distance in y.

convert_to_pixel(coords)
This converts a code-location to an image-location

export_fits(filename_prefix, fields=None)
This will export a set of FITS images of either the fields specified or all the fields already in the object.
The output filenames are filename_prefix plus an underscore plus the name of the field.

This requires the pyfits module, which is a standalone module provided by STSci to interface with FITS-
format files.

export_hdf5(filename, fields=None)
This function opens (append-mode) an HDF5 file and adds all of the requested fields (default: All) to the
top level of the data file.

open_in_ds9(field, take_log=True)
This will open a given field in DS9. This requires the numdisplay package, which is a simple download
from STSci. Furthermore, it presupposed that it can connect to DS9 – that is, that DS9 is already open.

class AnnuliProfiler(fixed_buffer, center, num_bins, min_radius, max_radius)
This is a very simple class, principally used to sum up total values inside annuli in a fixed resolution buffer. It
accepts fixed_buffer, which should be a FixedResolutionBuffer, center, which is in pixel coordinates. num_bins,
min_radius and max_radius all refer to the binning properties for the annuli. Note that these are all in pixel
values.

sum(item)
Returns the sum of a given field.

144 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

12.3.4 yt.raven.Callbacks Plot Modification Callbacks

These are all meant to be instantiated and fed into yt.raven.RavenPlot.add_callback(). For a more
narrative discussion see Plot Modification Mechanisms.

class ArrowCallback(pos, code_size, plot_args=None)
This adds an arrow pointing at pos with size code_size in code units. plot_args is a dict fed to matplotlib with
arrow properties.

class ClumpContourCallback(clumps, plot_args=None)
Take a list of clumps and plot them as a set of contours.

class ContourCallback(field, ncont=5, factor=4, take_log=False, clim=None, plot_args=None)
Add contours in field to the plot. ncont governs the number of contours generated, factor governs the number
of points used in the interpolation, take_log governs how it is contoured and clim gives the (upper, lower) limits
for contouring.

class CoordAxesCallback(unit=None, coords=False)
Creates x and y axes for a VMPlot. In the future, it will attempt to guess the proper units to use.

class CuttingQuiverCallback(field_x, field_y, factor)
Get a quiver plot on top of a cutting plane, using field_x and field_y, skipping every factor datapoint in the
discretization.

class GridBoundaryCallback(alpha=1.0, min_pix=1)
Adds grid boundaries to a plot, optionally with alpha-blending. Cuttoff for display is at min_pix wide.

class HopCircleCallback(hop_output, max_number=None, annotate=False, min_size=20,
max_size=10000000, font_size=8, print_halo_size=False, print_halo_mass=False,
width=None)

Accepts a yt.lagos.HopList hop_output and plots up to max_number (None for unlimited) halos as cir-
cles.

class HopParticleCallback(hop_output, p_size=1.0, max_number=None, min_size=20, al-
pha=0.20000000000000001)

Adds particle positions for the members of each halo as identified by HOP. Along axis up to max_number
groups in hop_output that are larger than min_size are plotted with p_size pixels per particle; alpha determines
the opacity of each particle.

class LabelCallback(label)
This adds a label to the plot.

class LinePlotCallback(x, y, plot_args=None)
Over plot x and y with plot_args fed into the plot.

class MarkerAnnotateCallback(pos, marker=’x’, plot_args=None)
Adds text marker at pos in code-arguments. plot_args is a dict that will be forwarded to the plot command.

class NewParticleCallback(width, p_size=1.0, col=’k’, stride=1.0, ptype=None)
Adds particle positions, based on a thick slab along axis with a width along the line of sight. p_size controls the
number of pixels per particle, and col governs the color. ptype will restrict plotted particles to only those that
are of a given type.

class ParticleCallback(axis, width, p_size=1.0, col=’k’, stride=1.0)
Adds particle positions, based on a thick slab along axis with a width along the line of sight. p_size controls the
number of pixels per particle, and col governs the color.

class PlotCallback(*args, **kwargs)

class PointAnnotateCallback(pos, text, text_args=None)
This adds text at position pos, where pos is in code-space. text_args is a dict fed to the text placement code.

12.3. yt.raven Plotting and Plot Interfaces 145

yt Documentation, Release 1.5-beta

class QuiverCallback(field_x, field_y, factor)
Adds a ‘quiver’ plot to any plot, using the field_x and field_y from the associated data, skipping every factor
datapoints.

class SphereCallback(center, radius, circle_args=None, text=None, text_args=None)
A sphere centered at center in code units with radius radius in code units will be created, with optional cir-
cle_args, text, and text_args.

class TextLabelCallback(pos, text, text_args=None)
Accepts a position in (0..1, 0..1) of the image, some text and optionally some text arguments.

class TitleCallback(title=’Plot’)
Accepts a title and adds it to the plot

class UnitBoundaryCallback(unit=’au’, factor=4, text_annotate=True, text_which=-2)
Add on a plot indicating where factor*s of *unit are shown. Optionally text_annotate on the text_which-indexed
box on display.

class VelocityCallback(factor=16)
Adds a ‘quiver’ plot of velocity to the plot, skipping all but every factor datapoint

class VobozCircleCallback(voboz_output, max_number=None, annotate=False, min_size=20, font_size=8,
print_halo_size=False)

12.4 yt.reason GUI Methods and Objects

When the GUI is onscreen, you can open up a shell to not only interact with the data already in existence but to add new
data objects. The one instance of ReasonMainWindow is known as mainwindow in the namespace of the interpreter.

Additionally, within the namespace of the Reason interpreter, you have access to outputs, which is a list of the outputs
open in the main window, and data_objects, which is every single derived data object generated in the GUI.

class ReasonMainWindow(*args, **kwds)

12.5 Convenience Functions

These are functions that are meant to be used as a quick and easy mechanism for common operations.

12.5.1 yt.convenience Convenience Functions

load(*args, **kwargs)
This function attempts to determine the base data type of a filename or other set of arguments by calling
yt.lagos.StaticOutput._is_valid() until it finds a match, at which point it returns an instance
of the appropriate yt.lagos.StaticOutput subclass.

all_pfs(max_depth=1, name_spec=’*.hierarchy’, **kwargs)
This function searchs a directory and its sub-directories, up to a depth of max_depth, for parameter files. It looks
for the name_spec and then instantiates an EnzoStaticOutput from each. All subsequent kwargs are passed on
to the EnzoStaticOutput constructor.

max_spheres(width, unit, **kwargs)
This calls all_pfs() and then for each parameter file creates a AMRSphereBase for each one, centered on
the point of highest density, with radius width in units of unit.

146 Chapter 12. API Documentation

yt Documentation, Release 1.5-beta

12.5.2 yt.funcs Miscellaneous Functions

iterable(obj)
Grabbed from Python Cookbook / matploblib.cbook. Returns true/false for obj iterable.

ensure_list(obj)
This function ensures that obj is a list. Typically used to convert a string to a list, for instance ensuring the fields
as an argument is a list.

just_one(obj)

humanize_time(secs)
Takes secs and returns a nicely formatted string

time_execution(func)
Decorator for seeing how long a given function takes, depending on whether or not the global ‘yt.timefunctions’
config parameter is set.

This can be used like so:

@time_execution

def some_longrunning_function(...):

print_tb(func)
This function is used as a decorate on a function to have the calling stack printed whenever that function is
entered.

This can be used like so:

@print_tb
def some_deeply_nested_function(...):

rootonly(func)
This is a decorator that, when used, will only call the function on the root processor and then broadcast the
results of the function to all other processors.

This can be used like so:

@rootonly
def some_root_only_function(...):

deprecate(func)
This decorator issues a deprecation warning.

This can be used like so:

@rootonly
def some_really_old_function(...):

pdb_run(func)
This decorator inserts a pdb session on top of the call-stack into a function.

This can be used like so:

@rootonly
def some_function_to_debug(...):

12.5. Convenience Functions 147

yt Documentation, Release 1.5-beta

insert_ipython(num_up=1)
Placed inside a function, this will insert an IPython interpreter at that current location. This will enabled detailed
inspection of the current exeuction environment, as well as (optional) modification of that environment. num_up
refers to how many frames of the stack get stripped off, and defaults to 1 so that this function itself is stripped
off.

get_pbar(title, maxval)
This returns a progressbar of the most appropriate type, given a title and a maxval.

only_on_root(func, *args, **kwargs)
This function accepts a func, a set of args and kwargs and then only on the root processor calls the function. All
other processors get “None” handed back.

paste_traceback(exc_type, exc, tb)
This is a traceback handler that knows how to paste to the pastebin. Should only be used in sys.excepthook.

12.5.3 yt.config Configuration System

class YTConfigParser(fn, defaults=None)
Bases: ConfigParser.ConfigParser

Simple class providing some functionality I wish existed in the ConfigParser module already

add_section(section)
Create a new section in the configuration.

Raise DuplicateSectionError if a section by the specified name already exists. Raise ValueError if name is
DEFAULT or any of it’s case-insensitive variants.

get(section, option, raw=False, vars=None)
Get an option value for a given section.

All % interpolations are expanded in the return values, based on the defaults passed into the constructor,
unless the optional argument ‘raw’ is true. Additional substitutions may be provided using the ‘vars’
argument, which must be a dictionary whose contents overrides any pre-existing defaults.

The section DEFAULT is special.

has_option(section, option)
Check for the existence of a given option in a given section.

has_section(section)
Indicate whether the named section is present in the configuration.

The DEFAULT section is not acknowledged.

items(section, raw=False, vars=None)
Return a list of tuples with (name, value) for each option in the section.

All % interpolations are expanded in the return values, based on the defaults passed into the constructor,
unless the optional argument ‘raw’ is true. Additional substitutions may be provided using the ‘vars’
argument, which must be a dictionary whose contents overrides any pre-existing defaults.

The section DEFAULT is special.

options(section)
Return a list of option names for the given section name.

read(filenames)
Read and parse a filename or a list of filenames.

148 Chapter 12. API Documentation

http://docs.python.org/library/configparser.html#ConfigParser.ConfigParser

yt Documentation, Release 1.5-beta

Files that cannot be opened are silently ignored; this is designed so that you can specify a list of potential
configuration file locations (e.g. current directory, user’s home directory, systemwide directory), and all
existing configuration files in the list will be read. A single filename may also be given.

Return list of successfully read files.

readfp(fp, filename=None)
Like read() but the argument must be a file-like object.

The ‘fp’ argument must have a ‘readline’ method. Optional second argument is the ‘filename’, which if
not given, is taken from fp.name. If fp has no ‘name’ attribute, ‘<???>’ is used.

remove_option(section, option)
Remove an option.

remove_section(section)
Remove a file section.

sections()
Return a list of section names, excluding [DEFAULT]

set(section, opt, val)
This sets an option named opt to val inside section, creating section if necessary.

write(fp)
Write an .ini-format representation of the configuration state.

12.6 yt.extensions Extensions API

There are some functions, routines and classes that utilize the yt API but aren’t necessarily a part of the core func-
tionality. These live inside the yt/extensions/ subdirectory and are accessible by direct importation.

12.6.1 yt.extensions.coordinate_transforms Coordinate Transforms

This module allows the user to regrid existing data into an arbitrary coordinate system. It comes with the machinery to
automatically regrid onto spherical coordinates. Module author: Matthew Turk <matthewturk@gmail.com>

spherical_regrid(pf, nr, ntheta, nphi, rmax, fields, center=None, smoothed=True)
This function takes a parameter file (pf) along with the nr, ntheta and nphi points to generate out to rmax, and
it grids fields onto those points and returns a dict. center if supplied will be the center, otherwise the most dense
point will be chosen. smoothed governs whether regular covering grids or smoothed covering grids will be used.

arbitrary_regrid(new_grid, data_source, fields, smoothed=True)
This function accepts a dict of points ‘x’, ‘y’ and ‘z’ and a data source from which to interpolate new points,
along with a list of fields it needs to regrid onto those xyz points. It then returns interpolated points. This has
not been well-tested other than for regular spherical regridding.

Sample Usage

from yt.mods import *
from yt.extensions.coordinate_transforms import *

pf = load("galaxy1200.dir/galaxy1200")

nr, ntheta, nphi = 128, 180, 180

12.6. yt.extensions Extensions API 149

mailto:matthewturk@gmail.com

yt Documentation, Release 1.5-beta

fields = ["Density", "Temperature"]
center = [0.5, 0.5, 0.5]

regrid = spherical_regrid(pf, nr, ntheta, nphi, fields, center)

12.6.2 yt.extensions.disk_analysis Disk Analysis

The disk stacker is a mechanism for taking many oblique slices (see cutting) and stacking them together. The
mechanism here is rather simple – you feed in a normal angle, a disk height, a width, and it makes many slices through
the domain and adds them all up. This enables a ‘stacked’ image of the disk to be produced.

Once the object has been instantiated, you can access any field as per normal and it will stack it as requested:
Module author: Matthew Turk <matthewturk@gmail.com>

class StackedDiskImage(pf, center, norm_vec, thickness, width, nslices=100, buff_size=(800, 800))
This class implements an AMR data object that will stack up oblique-slices to generate an image along an
arbitrary axis.

Sample Usage

from yt.mods import *
from yt.extensions.disk_analysis import StackedDiskImage

pf = load("galaxy1200.dir/galaxy1200")
norm_vec = [0.2, 0.4, 0.1]
center = [0.8, 0.5, 0.3]
thickness = 5.0 / pf[’kpc’]
width = 100.0 / pf[’kpc’]
n_slices = 200
image_size = (800, 800)

disk = StackedDiskImage(pf, center, norm_vec,
thickness, width, nslices, image_size)

my_disk_image = disk["Density"]

12.6.3 yt.extensions.HaloProfiler Halo Profiler

This module allows for systematic analysis and imaging of halos found in a simulation. Module author:
Britton Smith <brittonsmith@gmail.com>

12.6.4 yt.extensions.HierarchySubset Hierarchy Subset

This module provides a mechanism for extracted a subset of a hierarchy. Typically this is used to export data to VTK
or Amira format. Module author: Matthew Turk <matthewturk@gmail.com>

class ConstructedRootGrid(pf, level, left_edge, right_edge)
This is a fake root grid, constructed by creating a yt.lagos.CoveringGridBase at a given level between
left_edge and right_edge.

class ExtractedHierarchy(pf, min_level, max_level=-1, offset=None, always_copy=False)
This is a class that extracts a hierarchy from another hierarchy, filling in regions as necessary. It accepts a

150 Chapter 12. API Documentation

mailto:matthewturk@gmail.com
mailto:brittonsmith@gmail.com
mailto:matthewturk@gmail.com

yt Documentation, Release 1.5-beta

parameter file (pf), a min_level, a max_level, and alternately an offset. This class is typically or exclusively used
to extract for the purposes of visualization.

12.6.5 yt.extensions.SpectralIntegrator Spectral Integrator

This module provides a mechanism for integrating emissivity output from CLOUDY and creating integrated X-ray
emissivity fields. Module author: Matthew Turk <matthewturk@gmail.com>

class SpectralFrequencyIntegrator(table, field_names, bounds, ev_bounds)
From a table, interpolate over field_names to get resultant luminosity. Table must be of the style such that it is
ordered by [field_names[0], field_names[1], ev]

add_frequency_bin_field(ev_min, ev_max)
Add a new field to the FieldInfoContainer, which is an integrated bin from ev_min to ev_max.

Returns the name of the new field.

create_table_from_textfiles(pattern, rho_spec, e_spec, T_spec)
This accepts a CLOUDY text file of emissivities and constructs an interpolation table for spectral integration.

12.6.6 yt.extensions.lightcone Light Cone Generation

yt has the facility to create light cones, which are stacks of images generated from a series of simulations. The code
to generate this is in the module lightcone. Module author: Britton Smith <brittonsmith@gmail.com>

12.7 yt.fido File Storage and Management

In times past, this module was used for moving data and storing it in long-term storage. Now it is primarily used as a
mechanism for loading parameter files without user intervention – in the case of object storage and serialization. (See
Storing and Loading Objects.) There is still quite a bit of code that might be useful, but recent versions of Enzo have
largely made it obsolete.

However, the yt.fido.ParameterFileStore is still quite useful for object serialization!

class ParameterFileStore(in_memory=False)
This class is designed to be a semi-persistent storage for parameter files. By identifying each parameter file with
a unique hash, objects can be stored independently of parameter files – when an object is loaded, the parameter
file is as well, based on the hash. For storage concerns, only a few hundred will be retained in cache.

check_pf(pf)
This will ensure that the parameter file (pf) handed to it is recorded in the storage unit. In doing so, it will
update path and “last_seen” information.

flush_db()
This flushes the storage to disk.

get_pf_ctid(ctid)
This returns a parameter file based on a CurrentTimeIdentifier.

get_pf_hash(hash)
This returns a parameter file based on a hash.

init_db()
This function ensures that the storage database exists and can be used.

insert_pf(pf)
This will insert a new pf and flush the database to disk.

12.7. yt.fido File Storage and Management 151

mailto:matthewturk@gmail.com
mailto:brittonsmith@gmail.com

yt Documentation, Release 1.5-beta

read_db()
This will read the storage device from disk.

wipe_hash(hash)
This removes a hash corresponding to a parameter file from the storage.

12.8 yt.lagos.ParallelTools Parallel Helper Functions

These functions are typically not used except in the construction of new parallel objects, but are documented here for
future compatibility.

class ParallelAnalysisInterface()
This is an interface specification providing several useful utility functions for analyzing something in parallel.

class ObjectIterator(pobj, just_list=False, attr=’_grids’)
This is a generalized class that accepts a list of objects and then attempts to intelligently iterate over them.

class ParallelObjectIterator(pobj, just_list=False, attr=’_grids’, round_robin=False)
This takes an object, pobj, that implements ParallelAnalysisInterface, and then does its thing, calling initliaze
and finalize on the object.

class ParallelDummy(name, bases, d)
This is a base class that, on instantiation, replaces all attributes that don’t start with _ with
parallel_simple_proxy()-wrapped attributes. Used as a metaclass.

parallel_simple_proxy(func)
This is a decorator that broadcasts the result of computation on a single processor to all other processors. To
do so, it uses the _processing and _distributed flags in the object to check for blocks. Meant only to be used on
objects that subclass ParallelAnalysisInterface.

parallel_passthrough(func)
If we are not run in parallel, this function passes the input back as output; otherwise, the function gets called.
Used as a decorator.

parallel_blocking_call(func)
This decorator blocks on entry and exit of a function.

parallel_splitter(f1, f2)
This function returns either the function f1 or f2 depending on whether or not we’re the root processor. Mainly
used in class definitions.

parallel_root_only(func)
This decorator blocks and calls the function on the root processor, but does not broadcast results to the other
processors.

152 Chapter 12. API Documentation

CHAPTER

THIRTEEN

CHANGELOG

This is a non-comprehensive log of changes to the code.

13.1 Version 1.5

Version 1.5 features many new improvements, most prominently that of the addition of parallel computing abilities
(see Parallel Computation With YT) and generalization for multiple AMR data formats, specifically both Enzo and
Orion.

• Rewritten documentation

• Fully parallel slices, projections, cutting planes, profiles, quantities

• Parallel HOP

• Friends-of-friends halo finder

• Object storage and serialization

• Major performance improvements to the clump finder (factor of five)

• Generalized domain sizes

• Generalized field info containers

• Dark Matter-only simulations

• 1D and 2D simulations

• Better IO for HDF5 sets

• Support for the Orion AMR code

• Spherical re-gridding

• Halo profiler

• Disk image stacker

• Light cone generator

• Callback interface improved

• Several new callbacks

• New data objects – ortho and non-ortho rays, limited ray-tracing

• Fixed resolution buffers

• Spectral integrator for CLOUDY data

153

yt Documentation, Release 1.5-beta

• Substantially better interactive interface

• Performance improvements everywhere

• Command-line interface to many common tasks

• Isolated plot handling, independent of PlotCollections

13.2 Version 1.0

• Initial release!

154 Chapter 13. ChangeLog

CHAPTER

FOURTEEN

INDICES AND TABLES

• Index

• Module Index

• Search Page

155

yt Documentation, Release 1.5-beta

156 Chapter 14. Indices and tables

BIBLIOGRAPHY

[vg06-kaehler] Kaehler, R., Wise, J., Abel, T., & Hege, H.-C. 2006, in Proceedings of the International Workshop on
Volume Graphics 2006 (Boston: Eurographics / IEEE VGTC 2006), 103–110

[2007ApJ-671-27H] Hallman, E. J., O’Shea, B. W., Burns, J. O., Norman, M. L., Harkness, R., & Wagner, R. 2007,
ApJ, 671, 27

[2009ApJ-696-96W] Wang, P. & Abel, T. 2009, ApJ, 696, 96

[2009ApJ-691-441S] Smith, B. D., Turk, M. J., Sigurdsson, S., O’Shea, B. W., & Norman, M. L. 2009, ApJ, 691, 441

[eishut98] Eisenstein, D. J. & Hut, P. 1998, ApJ, 498, 137

157

yt Documentation, Release 1.5-beta

158 Bibliography

MODULE INDEX

Y
yt.config, 148
yt.convenience, 146
yt.extensions, 149
yt.extensions.coordinate_transforms, 149
yt.extensions.disk_analysis, 150
yt.extensions.HaloProfiler, 150
yt.extensions.HierarchySubset, 150
yt.extensions.lightcone, 151
yt.extensions.SpectralIntegrator, 151
yt.fido, 151
yt.funcs, 147
yt.lagos, 125
yt.lagos.BaseDataTypes, 131
yt.lagos.ContourFinder, 139
yt.lagos.DerivedQuantities, 136
yt.lagos.FieldInfoContainer, 137
yt.lagos.HaloFinding, 139
yt.lagos.ParallelTools, 152
yt.lagos.Profiles, 138
yt.raven, 140
yt.raven.Callbacks, 145
yt.raven.FixedResolution, 143
yt.raven.PlotCollection, 140
yt.raven.PlotInterface, 143
yt.reason, 146

159

yt Documentation, Release 1.5-beta

160 Module Index

INDEX

Symbols
_AngularMomentumVector() (in module

yt.lagos.DerivedQuantities), 136
_BaryonSpinParameter() (in module

yt.lagos.DerivedQuantities), 136
_BulkVelocity() (in module yt.lagos.DerivedQuantities),

136
_CenterOfMass() (in module yt.lagos.DerivedQuantities),

136
_Extrema() (in module yt.lagos.DerivedQuantities), 136
_IsBound() (in module yt.lagos.DerivedQuantities), 136
_MaxLocation() (in module yt.lagos.DerivedQuantities),

136
_ParticleSpinParameter() (in module

yt.lagos.DerivedQuantities), 136
_TotalMass() (in module yt.lagos.DerivedQuantities), 136
_TotalQuantity() (in module yt.lagos.DerivedQuantities),

136
_WeightedAverageQuantity() (in module

yt.lagos.DerivedQuantities), 136
__init__() (built-in function), 85
_get_cut_mask() (built-in function), 85
_get_list_of_grids() (built-in function), 85
_is_fully_enclosed() (built-in function), 85

A
add_cutting_plane() (yt.raven.PlotCollection method),

140
add_cutting_plane() (yt.raven.PlotCollectionInteractive

method), 142
add_field() (yt.lagos.FieldInfoContainer method), 137
add_fields() (yt.lagos.BinnedProfile1D method), 138
add_fields() (yt.lagos.BinnedProfile2D method), 138
add_fields() (yt.lagos.BinnedProfile3D method), 139
add_frequency_bin_field()

(yt.extensions.SpectralIntegrator.SpectralFrequencyIntegrator
method), 151

add_phase_object() (yt.raven.PlotCollection method),
140

add_phase_object() (yt.raven.PlotCollectionInteractive
method), 142

add_phase_sphere() (yt.raven.PlotCollection method),
140

add_phase_sphere() (yt.raven.PlotCollectionInteractive
method), 142

add_profile_object() (yt.raven.PlotCollection method),
140

add_profile_object() (yt.raven.PlotCollectionInteractive
method), 142

add_profile_sphere() (yt.raven.PlotCollection method),
141

add_profile_sphere() (yt.raven.PlotCollectionInteractive
method), 142

add_projection() (yt.raven.PlotCollection method), 141
add_projection() (yt.raven.PlotCollectionInteractive

method), 142
add_projection_interpolated() (yt.raven.PlotCollection

method), 141
add_projection_interpolated()

(yt.raven.PlotCollectionInteractive method),
142

add_section() (yt.config.YTConfigParser method), 148
add_slice() (yt.raven.PlotCollection method), 141
add_slice() (yt.raven.PlotCollectionInteractive method),

142
add_slice_interpolated() (yt.raven.PlotCollection

method), 141
add_slice_interpolated() (yt.raven.PlotCollectionInteractive

method), 142
all_pfs() (in module yt.convenience), 146
AMR1DData (class in yt.lagos), 132
AMR2DData (class in yt.lagos), 132
AMR3DData (class in yt.lagos), 133
AMRCoveringGridBase (class in yt.lagos), 135
AMRCuttingPlaneBase (class in yt.lagos), 134
AMRCylinderBase (class in yt.lagos), 135
AMRData (class in yt.lagos), 132
AMRGridCollection (class in yt.lagos), 135
AMRGridPatch (class in yt.lagos), 130
AMRHierarchy (class in yt.lagos), 128
AMROrthoRayBase (class in yt.lagos), 134
AMRProjBase (class in yt.lagos), 135
AMRRegionBase (class in yt.lagos), 135

161

yt Documentation, Release 1.5-beta

AMRSliceBase (class in yt.lagos), 134
AMRSmoothedCoveringGridBase (class in yt.lagos), 135
AMRSphereBase (class in yt.lagos), 135
AnnuliProfiler (class in yt.raven.FixedResolution), 144
arbitrary_regrid() (in module

yt.extensions.coordinate_transforms), 149
ArrowCallback (class in yt.raven.Callbacks), 145
autoscale() (yt.raven.PlotCollection method), 141
autoscale() (yt.raven.PlotCollectionInteractive method),

143

B
BinnedProfile1D (class in yt.lagos), 138
BinnedProfile2D (class in yt.lagos), 138
BinnedProfile3D (class in yt.lagos), 139
bulk_velocity() (yt.lagos.Halo method), 139

C
center_of_mass() (yt.lagos.Halo method), 139
check_available() (yt.lagos.DerivedField method), 137
check_pf() (yt.fido.ParameterFileStore method), 151
clear_all() (yt.lagos.AMRGridPatch method), 130
clear_all() (yt.lagos.EnzoGridBase method), 129
clear_all() (yt.lagos.OrionGridBase method), 130
clear_all_grid_references() (yt.lagos.AMRGridPatch

method), 131
clear_all_grid_references() (yt.lagos.EnzoGridBase

method), 129
clear_all_grid_references() (yt.lagos.OrionGridBase

method), 130
clear_data() (yt.lagos.AMR1DData method), 132
clear_data() (yt.lagos.AMR2DData method), 133
clear_data() (yt.lagos.AMR3DData method), 133
clear_data() (yt.lagos.AMRData method), 132
clear_data() (yt.lagos.AMRGridPatch method), 131
clear_data() (yt.lagos.EnzoGridBase method), 129
clear_data() (yt.lagos.OrionGridBase method), 130
clear_derived_quantities() (yt.lagos.AMRGridPatch

method), 131
clear_derived_quantities() (yt.lagos.EnzoGridBase

method), 129
clear_derived_quantities() (yt.lagos.OrionGridBase

method), 130
clear_plots() (yt.raven.PlotCollection method), 141
ClumpContourCallback (class in yt.raven.Callbacks), 145
ConstructedRootGrid (class in

yt.extensions.HierarchySubset), 150
ContourCallback (class in yt.raven.Callbacks), 145
convert() (yt.lagos.AMR1DData method), 132
convert() (yt.lagos.AMR2DData method), 133
convert() (yt.lagos.AMR3DData method), 133
convert() (yt.lagos.AMRData method), 132
convert() (yt.lagos.AMRGridPatch method), 131
convert() (yt.lagos.EnzoGridBase method), 129

convert() (yt.lagos.OrionGridBase method), 130
convert_distance_x() (yt.raven.FixedResolution.FixedResolutionBuffer

method), 143
convert_distance_x() (yt.raven.FixedResolution.ObliqueFixedResolutionBuffer

method), 144
convert_distance_y() (yt.raven.FixedResolution.FixedResolutionBuffer

method), 144
convert_distance_y() (yt.raven.FixedResolution.ObliqueFixedResolutionBuffer

method), 144
convert_to_pixel() (yt.raven.FixedResolution.FixedResolutionBuffer

method), 144
convert_to_pixel() (yt.raven.FixedResolution.ObliqueFixedResolutionBuffer

method), 144
CoordAxesCallback (class in yt.raven.Callbacks), 145
cosmology_get_units() (yt.lagos.EnzoStaticOutput

method), 125
create_table_from_textfiles() (in module

yt.extensions.SpectralIntegrator), 151
cut_region() (yt.lagos.AMR3DData method), 133
CuttingQuiverCallback (class in yt.raven.Callbacks), 145

D
deprecate() (in module yt.funcs), 147
DerivedField (class in yt.lagos), 137

E
ensure_list() (in module yt.funcs), 147
EnzoFieldContainer (class in yt.lagos), 137
EnzoGridBase (class in yt.lagos), 129
EnzoHierarchy (class in yt.lagos), 126
EnzoStaticOutput (class in yt.lagos), 125
export_boxes_pv() (yt.lagos.AMRHierarchy method),

128
export_boxes_pv() (yt.lagos.EnzoHierarchy method), 126
export_boxes_pv() (yt.lagos.OrionHierarchy method),

127
export_fits() (yt.raven.FixedResolution.FixedResolutionBuffer

method), 144
export_fits() (yt.raven.FixedResolution.ObliqueFixedResolutionBuffer

method), 144
export_hdf5() (yt.raven.FixedResolution.FixedResolutionBuffer

method), 144
export_hdf5() (yt.raven.FixedResolution.ObliqueFixedResolutionBuffer

method), 144
export_particles_pb() (yt.lagos.AMRHierarchy method),

128
export_particles_pb() (yt.lagos.EnzoHierarchy method),

126
export_particles_pb() (yt.lagos.OrionHierarchy method),

127
extract_connected_sets() (yt.lagos.AMR3DData

method), 133
extract_region() (yt.lagos.AMR3DData method), 133

162 Index

yt Documentation, Release 1.5-beta

ExtractedHierarchy (class in
yt.extensions.HierarchySubset), 150

ExtractedRegionBase (class in yt.lagos), 135

F
FakeGridForParticles (class in yt.lagos), 134
FieldInfoContainer (class in yt.lagos), 137
find_max() (yt.lagos.AMRGridPatch method), 131
find_max() (yt.lagos.AMRHierarchy method), 128
find_max() (yt.lagos.EnzoGridBase method), 129
find_max() (yt.lagos.EnzoHierarchy method), 126
find_max() (yt.lagos.OrionGridBase method), 130
find_max() (yt.lagos.OrionHierarchy method), 127
find_min() (yt.lagos.AMRGridPatch method), 131
find_min() (yt.lagos.AMRHierarchy method), 128
find_min() (yt.lagos.EnzoGridBase method), 129
find_min() (yt.lagos.EnzoHierarchy method), 126
find_min() (yt.lagos.OrionGridBase method), 130
find_min() (yt.lagos.OrionHierarchy method), 127
find_point() (yt.lagos.AMRHierarchy method), 128
find_point() (yt.lagos.EnzoHierarchy method), 126
find_point() (yt.lagos.OrionHierarchy method), 127
find_ray_grids() (yt.lagos.AMRHierarchy method), 128
find_ray_grids() (yt.lagos.EnzoHierarchy method), 126
find_ray_grids() (yt.lagos.OrionHierarchy method), 127
find_slice_grids() (yt.lagos.AMRHierarchy method), 128
find_slice_grids() (yt.lagos.EnzoHierarchy method), 126
find_slice_grids() (yt.lagos.OrionHierarchy method), 127
find_sphere_grids() (yt.lagos.AMRHierarchy method),

128
find_sphere_grids() (yt.lagos.EnzoHierarchy method),

126
find_sphere_grids() (yt.lagos.OrionHierarchy method),

127
findMax() (yt.lagos.AMRHierarchy method), 128
findMax() (yt.lagos.EnzoHierarchy method), 126
findMax() (yt.lagos.OrionHierarchy method), 127
FixedResolutionBuffer (class in

yt.raven.FixedResolution), 143
flush_data() (yt.lagos.AMRCoveringGridBase method),

135
flush_db() (yt.fido.ParameterFileStore method), 151
FOFHaloFinder (class in yt.lagos), 140

G
get() (yt.config.YTConfigParser method), 148
get_box_grids() (yt.lagos.AMRHierarchy method), 128
get_box_grids() (yt.lagos.EnzoHierarchy method), 126
get_box_grids() (yt.lagos.OrionHierarchy method), 127
get_data() (yt.lagos.AMR2DData method), 133
get_data() (yt.lagos.AMRGridPatch method), 131
get_data() (yt.lagos.AMRHierarchy method), 128
get_data() (yt.lagos.EnzoGridBase method), 129
get_data() (yt.lagos.EnzoHierarchy method), 126

get_data() (yt.lagos.OrionGridBase method), 130
get_data() (yt.lagos.OrionHierarchy method), 127
get_dependencies() (yt.lagos.DerivedField method), 137
get_field_parameter() (yt.lagos.AMR1DData method),

132
get_field_parameter() (yt.lagos.AMR2DData method),

133
get_field_parameter() (yt.lagos.AMR3DData method),

133
get_field_parameter() (yt.lagos.AMRData method), 132
get_field_parameter() (yt.lagos.AMRGridPatch method),

131
get_field_parameter() (yt.lagos.EnzoGridBase method),

129
get_field_parameter() (yt.lagos.OrionGridBase method),

130
get_global_startindex() (yt.lagos.EnzoGridBase method),

129
get_label() (yt.lagos.DerivedField method), 137
get_multi_plot() (in module yt.raven), 143
get_parameter() (yt.lagos.EnzoStaticOutput method), 125
get_pbar() (in module yt.funcs), 148
get_pf_ctid() (yt.fido.ParameterFileStore method), 151
get_pf_hash() (yt.fido.ParameterFileStore method), 151
get_position() (yt.lagos.AMRGridPatch method), 131
get_position() (yt.lagos.EnzoGridBase method), 129
get_position() (yt.lagos.OrionGridBase method), 130
get_projected_units() (yt.lagos.DerivedField method),

137
get_projection() (in module yt.raven.PlotInterface), 143
get_slice() (in module yt.raven.PlotInterface), 143
get_smallest_dx() (yt.lagos.AMRHierarchy method), 128
get_smallest_dx() (yt.lagos.EnzoHierarchy method), 127
get_smallest_dx() (yt.lagos.OrionHierarchy method), 127
get_source() (yt.lagos.DerivedField method), 138
get_sphere() (yt.lagos.Halo method), 139
get_units() (yt.lagos.DerivedField method), 138
GridBoundaryCallback (class in yt.raven.Callbacks), 145
GridConsiderationQueue (class in yt.lagos), 139

H
Halo (class in yt.lagos), 139
HaloFinder (in module yt.lagos), 139
HaloList (class in yt.lagos), 139
has_field_parameter() (yt.lagos.AMR1DData method),

132
has_field_parameter() (yt.lagos.AMR2DData method),

133
has_field_parameter() (yt.lagos.AMR3DData method),

134
has_field_parameter() (yt.lagos.AMRData method), 132
has_field_parameter() (yt.lagos.AMRGridPatch method),

131

Index 163

yt Documentation, Release 1.5-beta

has_field_parameter() (yt.lagos.EnzoGridBase method),
129

has_field_parameter() (yt.lagos.OrionGridBase method),
130

has_key() (yt.lagos.AMR1DData method), 132
has_key() (yt.lagos.AMR2DData method), 133
has_key() (yt.lagos.AMR3DData method), 134
has_key() (yt.lagos.AMRData method), 132
has_key() (yt.lagos.AMRGridPatch method), 131
has_key() (yt.lagos.EnzoGridBase method), 129
has_key() (yt.lagos.EnzoStaticOutput method), 125
has_key() (yt.lagos.OrionGridBase method), 130
has_key() (yt.lagos.OrionStaticOutput method), 126
has_key() (yt.lagos.StaticOutput method), 126
has_option() (yt.config.YTConfigParser method), 148
has_section() (yt.config.YTConfigParser method), 148
HopCircleCallback (class in yt.raven.Callbacks), 145
HOPHaloFinder (class in yt.lagos), 140
HopParticleCallback (class in yt.raven.Callbacks), 145
humanize_time() (in module yt.funcs), 147

I
identify_contours() (in module yt.lagos), 139
init_db() (yt.fido.ParameterFileStore method), 151
insert_ipython() (in module yt.funcs), 147
insert_pf() (yt.fido.ParameterFileStore method), 151
interpolate_discretize() (yt.lagos.AMR2DData method),

133
items() (yt.config.YTConfigParser method), 148
iterable() (in module yt.funcs), 147

J
just_one() (in module yt.funcs), 147

K
keys() (yt.lagos.EnzoStaticOutput method), 125
keys() (yt.lagos.FieldInfoContainer method), 137
keys() (yt.lagos.OrionStaticOutput method), 126
keys() (yt.lagos.StaticOutput method), 126

L
LabelCallback (class in yt.raven.Callbacks), 145
LinePlotCallback (class in yt.raven.Callbacks), 145
load() (in module yt.convenience), 146
load_object() (yt.lagos.AMRHierarchy method), 128
load_object() (yt.lagos.EnzoHierarchy method), 127
load_object() (yt.lagos.OrionHierarchy method), 127

M
MarkerAnnotateCallback (class in yt.raven.Callbacks),

145
max_spheres() (in module yt.convenience), 146
maximum_density() (yt.lagos.Halo method), 140

maximum_density_location() (yt.lagos.Halo method),
140

maximum_radius() (yt.lagos.Halo method), 140

N
NewParticleCallback (class in yt.raven.Callbacks), 145

O
ObjectIterator (class in yt.lagos), 152
ObliqueFixedResolutionBuffer (class in

yt.raven.FixedResolution), 144
only_on_root() (in module yt.funcs), 148
open_in_ds9() (yt.raven.FixedResolution.FixedResolutionBuffer

method), 144
open_in_ds9() (yt.raven.FixedResolution.ObliqueFixedResolutionBuffer

method), 144
options() (yt.config.YTConfigParser method), 148
OrionFieldContainer (class in yt.lagos), 137
OrionGridBase (class in yt.lagos), 130
OrionHierarchy (class in yt.lagos), 127
OrionStaticOutput (class in yt.lagos), 125

P
paint_grids() (yt.lagos.AMR3DData method), 134
parallel_blocking_call() (in module yt.lagos), 152
parallel_passthrough() (in module yt.lagos), 152
parallel_root_only() (in module yt.lagos), 152
parallel_simple_proxy() (in module yt.lagos), 152
parallel_splitter() (in module yt.lagos), 152
ParallelAnalysisInterface (class in yt.lagos), 152
ParallelDummy (class in yt.lagos), 152
ParallelObjectIterator (class in yt.lagos), 152
ParameterFileStore (class in yt.fido), 151
ParticleCallback (class in yt.raven.Callbacks), 145
paste_traceback() (in module yt.funcs), 148
pdb_run() (in module yt.funcs), 147
PlotCallback (class in yt.raven.Callbacks), 145
PlotCollection (class in yt.raven), 140
PlotCollectionInteractive (class in yt.raven), 142
PointAnnotateCallback (class in yt.raven.Callbacks), 145
print_stats() (yt.lagos.AMRHierarchy method), 129
print_stats() (yt.lagos.EnzoHierarchy method), 127
print_stats() (yt.lagos.OrionHierarchy method), 128
print_tb() (in module yt.funcs), 147

Q
QuiverCallback (class in yt.raven.Callbacks), 145

R
read() (yt.config.YTConfigParser method), 148
read_db() (yt.fido.ParameterFileStore method), 152
readfp() (yt.config.YTConfigParser method), 149

164 Index

yt Documentation, Release 1.5-beta

readGlobalHeader() (yt.lagos.OrionHierarchy method),
128

ReasonMainWindow (class in yt.reason), 146
remove_option() (yt.config.YTConfigParser method),

149
remove_section() (yt.config.YTConfigParser method),

149
reslice() (yt.lagos.AMRSliceBase method), 134
rootonly() (in module yt.funcs), 147

S
save() (yt.raven.PlotCollection method), 141
save_data() (yt.lagos.AMRHierarchy method), 129
save_data() (yt.lagos.EnzoHierarchy method), 127
save_data() (yt.lagos.OrionHierarchy method), 128
save_object() (yt.lagos.AMR1DData method), 132
save_object() (yt.lagos.AMR2DData method), 133
save_object() (yt.lagos.AMR3DData method), 134
save_object() (yt.lagos.AMRData method), 132
save_object() (yt.lagos.AMRGridPatch method), 131
save_object() (yt.lagos.AMRHierarchy method), 129
save_object() (yt.lagos.EnzoGridBase method), 130
save_object() (yt.lagos.EnzoHierarchy method), 127
save_object() (yt.lagos.OrionGridBase method), 130
save_object() (yt.lagos.OrionHierarchy method), 128
sections() (yt.config.YTConfigParser method), 149
select_grids() (yt.lagos.AMR1DData method), 132
select_grids() (yt.lagos.AMR2DData method), 133
select_grids() (yt.lagos.AMR3DData method), 134
select_grids() (yt.lagos.AMRHierarchy method), 129
select_grids() (yt.lagos.EnzoHierarchy method), 127
select_grids() (yt.lagos.OrionHierarchy method), 128
set() (yt.config.YTConfigParser method), 149
set_cmap() (yt.raven.PlotCollection method), 141
set_cmap() (yt.raven.PlotCollectionInteractive method),

143
set_field_parameter() (yt.lagos.AMR1DData method),

132
set_field_parameter() (yt.lagos.AMR2DData method),

133
set_field_parameter() (yt.lagos.AMR3DData method),

134
set_field_parameter() (yt.lagos.AMRData method), 132
set_field_parameter() (yt.lagos.AMRGridPatch method),

131
set_field_parameter() (yt.lagos.EnzoGridBase method),

130
set_field_parameter() (yt.lagos.OrionGridBase method),

130
set_filename() (yt.lagos.EnzoGridBase method), 130
set_lim() (yt.raven.PlotCollection method), 141
set_lim() (yt.raven.PlotCollectionInteractive method),

143
set_width() (yt.raven.PlotCollection method), 141

set_width() (yt.raven.PlotCollectionInteractive method),
143

set_xlim() (yt.raven.PlotCollection method), 141
set_xlim() (yt.raven.PlotCollectionInteractive method),

143
set_ylim() (yt.raven.PlotCollection method), 141
set_ylim() (yt.raven.PlotCollectionInteractive method),

143
set_zlim() (yt.raven.PlotCollection method), 141
set_zlim() (yt.raven.PlotCollectionInteractive method),

143
shift() (yt.lagos.AMRSliceBase method), 134
SpectralFrequencyIntegrator (class in

yt.extensions.SpectralIntegrator), 151
SphereCallback (class in yt.raven.Callbacks), 146
spherical_regrid() (in module

yt.extensions.coordinate_transforms), 149
StackedDiskImage (class in yt.extensions.disk_analysis),

150
StaticOutput (class in yt.lagos), 126
store_profile() (yt.lagos.BinnedProfile3D method), 139
StoredBinnedProfile3D (class in yt.lagos), 139
sum() (yt.raven.FixedResolution.AnnuliProfiler method),

144
switch_field() (yt.raven.PlotCollection method), 142
switch_field() (yt.raven.PlotCollectionInteractive

method), 143
switch_z() (yt.raven.PlotCollection method), 142

T
TextLabelCallback (class in yt.raven.Callbacks), 146
time_execution() (in module yt.funcs), 147
TitleCallback (class in yt.raven.Callbacks), 146
total_mass() (yt.lagos.Halo method), 140

U
UnitBoundaryCallback (class in yt.raven.Callbacks), 146

V
ValidateDataField (class in yt.lagos), 138
ValidateGridType (class in yt.lagos), 138
ValidateParameter (class in yt.lagos), 138
ValidateProperty (class in yt.lagos), 138
ValidateSpatial (class in yt.lagos), 138
VelocityCallback (class in yt.raven.Callbacks), 146
VobozCircleCallback (class in yt.raven.Callbacks), 146

W
wipe_hash() (yt.fido.ParameterFileStore method), 152
write() (yt.config.YTConfigParser method), 149
write_out() (yt.lagos.BinnedProfile2D method), 138
write_out() (yt.lagos.HaloList method), 139

Index 165

yt Documentation, Release 1.5-beta

Y
yt.config (module), 148
yt.convenience (module), 146
yt.extensions (module), 149
yt.extensions.coordinate_transforms (module), 149
yt.extensions.disk_analysis (module), 150
yt.extensions.HaloProfiler (module), 150
yt.extensions.HierarchySubset (module), 150
yt.extensions.lightcone (module), 151
yt.extensions.SpectralIntegrator (module), 151
yt.fido (module), 151
yt.funcs (module), 147
yt.lagos (module), 125
yt.lagos.BaseDataTypes (module), 131
yt.lagos.ContourFinder (module), 139
yt.lagos.DerivedQuantities (module), 136
yt.lagos.FieldInfoContainer (module), 137
yt.lagos.HaloFinding (module), 139
yt.lagos.ParallelTools (module), 152
yt.lagos.Profiles (module), 138
yt.raven (module), 140
yt.raven.Callbacks (module), 145
yt.raven.FixedResolution (module), 143
yt.raven.PlotCollection (module), 140
yt.raven.PlotInterface (module), 143
yt.reason (module), 146
YTConfigParser (class in yt.config), 148

166 Index

	Introduction
	History
	What yt is and is not
	What functionality does yt offer?
	How do I cite yt?

	Getting the Code
	Installation
	Notes on Common Installation Locations
	Installing by Hand
	Starting up YT

	Analysis Philosophy
	Design Goals
	Object Methodology
	Derived Fields and Derived Quantities

	How to Use YT
	Quick Start Guide
	A Slightly Longer Introduction
	Command Line Tool
	Using and Manipulating Objects and Fields
	Examining and Manipulating Particles
	Creating Derived Fields
	Parallel Computation With YT
	How to Make Plots

	Cookbook
	Simple slice
	Simple projection
	Aligned cutting plane
	Sum mass in sphere
	Simple phase
	Simple profile
	Simple radial profile
	Halo finding
	Arbitrary vectors on slice
	Contours on slice
	Velocity vectors on slice
	Average value
	Find clumps
	Global phase plots
	Halo mass info
	Multi width save
	Zoomin frames
	Overplot particles
	Multi plot
	Multi plot 3x2
	Time series phase
	Time series quantity
	Extract fixed resolution data

	Advanced yt Usage
	Derived Quantities
	Plot Modification Mechanisms
	The Plugin File
	Creating 3D Datatypes
	Debugging and Driving YT

	Extensions
	Halo Finding
	HaloProfiler
	Analyzing an Entire Simulation

	Contributing Code
	Bug Fixes
	Licensing
	Fields and Extensions
	Analysis Code and Examples

	Asking for Help
	The Mailing List
	Installation Issues
	Vanilla Usage Issues
	Customization and Scripting Issues
	How To Report A Bug

	FAQ
	Why Python?
	Where can I learn more about Python?
	Who works on yt?
	What's up with the names?
	Are there any restrictions on my use of yt?
	How do I know what the units returned are?
	What are all these .yt files?
	How can I help?
	Something has gone wrong. What do I do?
	How do I specify an axis?
	Where can I go for support?

	yt Methods
	Introduction
	Analysis Requirements
	Community Engagement
	Data Analysis Layer
	Plotting and Visualization Layer
	Constraints of Scale
	Frontends and Interfaces
	Embedding yt Inside Enzo
	Generalization to Other AMR Codes
	Immersive Visualization with VTK
	Community Involvement
	Future Directions

	API Documentation
	yt.lagos Native AMR Data Structures
	yt.lagos Physical and Derived Data Objects
	yt.raven Plotting and Plot Interfaces
	yt.reason GUI Methods and Objects
	Convenience Functions
	yt.extensions Extensions API
	yt.fido File Storage and Management
	yt.lagos.ParallelTools Parallel Helper Functions

	ChangeLog
	Version 1.5
	Version 1.0

	Indices and tables
	Bibliography
	Module Index
	Index

